The most expressive way humans display emotions is through facial expressions. In this work we report on several advances we have made in building a system for classification of facial expressions from continuous video input. We introduce and test different Bayesian network classifiers for classifying expressions from video, focusing on changes in distribution assumptions, and feature dependency structures. In particular we use Naive-Bayes classifiers and change the distribution from Gaussian to Cauchy, and use Gaussian Tree-Augmented Naive Bayes (TAN) classifiers to learn the dependencies among different facial motion features. We also introduce a facial expression recognition from live video input using temporal cues. We exploit the existing methods and propose a new architecture of hidden Markov models (HMMs) for automatically segmenting and recognizing human facial expression from video sequences. The architecture performs both segmentation and recognition of the facial expressions...

Facial Expression Recognition from Video Sequences: Temporal and Static Modeling

Sebe, Niculae;
2003-01-01

Abstract

The most expressive way humans display emotions is through facial expressions. In this work we report on several advances we have made in building a system for classification of facial expressions from continuous video input. We introduce and test different Bayesian network classifiers for classifying expressions from video, focusing on changes in distribution assumptions, and feature dependency structures. In particular we use Naive-Bayes classifiers and change the distribution from Gaussian to Cauchy, and use Gaussian Tree-Augmented Naive Bayes (TAN) classifiers to learn the dependencies among different facial motion features. We also introduce a facial expression recognition from live video input using temporal cues. We exploit the existing methods and propose a new architecture of hidden Markov models (HMMs) for automatically segmenting and recognizing human facial expression from video sequences. The architecture performs both segmentation and recognition of the facial expressions...
2003
1-2
I., Cohen; Sebe, Niculae; L., Chen; A., Garg; T. S., Huang
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/7759
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 732
  • ???jsp.display-item.citation.isi??? 530
  • OpenAlex 871
social impact