In this paper, we present a general guideline to find a better distance measure for similarity estimation based on statistical analysis of distribution models and distance functions. A new set of distance measures are derived from the harmonic distance, the geometric distance, and their generalized variants according to the Maximum Likelihood theory. These measures can provide a more accurate feature model than the classical Euclidean and Manhattan distances. We also find that the feature elements are often from heterogeneous sources that may have different influence on similarity estimation. Therefore, the assumption of single isotropic distribution model is often inappropriate. To alleviate this problem, we use a boosted distance measure framework that finds multiple distance measures which fit the distribution of selected feature elements best for accurate similarity estimation. The new distance measures for similarity estimation are tested on two applications: stereo matching and m...

Distance Learning for Similarity Estimation

Sebe, Niculae;
2008-01-01

Abstract

In this paper, we present a general guideline to find a better distance measure for similarity estimation based on statistical analysis of distribution models and distance functions. A new set of distance measures are derived from the harmonic distance, the geometric distance, and their generalized variants according to the Maximum Likelihood theory. These measures can provide a more accurate feature model than the classical Euclidean and Manhattan distances. We also find that the feature elements are often from heterogeneous sources that may have different influence on similarity estimation. Therefore, the assumption of single isotropic distribution model is often inappropriate. To alleviate this problem, we use a boosted distance measure framework that finds multiple distance measures which fit the distribution of selected feature elements best for accurate similarity estimation. The new distance measures for similarity estimation are tested on two applications: stereo matching and m...
2008
3
J., Yu; J., Amores; Sebe, Niculae; P., Radeva; Q., Tian
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/7748
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 87
  • ???jsp.display-item.citation.isi??? 63
  • OpenAlex 91
social impact