Let G be a unipotent algebraic subgroup of some GLm(C) defined over Q. We describe an algorithm for finding a finite set of generators of the subgroup G(Z) = G ∩ GLm(Z). This is based on a new proof of the result (in more general form due to Borel and Harish-Chandra) that such a finite generating set exists.

Constructing arithmetic subgroups of unipotent groups

De Graaf, Willem Adriaan;
2009-01-01

Abstract

Let G be a unipotent algebraic subgroup of some GLm(C) defined over Q. We describe an algorithm for finding a finite set of generators of the subgroup G(Z) = G ∩ GLm(Z). This is based on a new proof of the result (in more general form due to Borel and Harish-Chandra) that such a finite generating set exists.
2009
11
De Graaf, Willem Adriaan; A., Pavan
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/77453
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
  • OpenAlex ND
social impact