We discuss a generalization of the Kummer construction. Namely an integral representation of a finite group produces an action on an abelian variety and, via a crepant resolution of the quotient, this gives rise to a higher dimensional variety with trivial canonical class and first cohomology. We use virtual Poincar\'e polynomials with coefficients in a ring of representations and McKay correspondence to compute cohomology of such Kummer varieties.

On the Kummer construction

Andreatta, Marco;
2010-01-01

Abstract

We discuss a generalization of the Kummer construction. Namely an integral representation of a finite group produces an action on an abelian variety and, via a crepant resolution of the quotient, this gives rise to a higher dimensional variety with trivial canonical class and first cohomology. We use virtual Poincar\'e polynomials with coefficients in a ring of representations and McKay correspondence to compute cohomology of such Kummer varieties.
2010
1
Andreatta, Marco; J., Wisniewski
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/76487
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
  • OpenAlex ND
social impact