In this paper we propose a system for monitoring abnormal NO2 emissions in the troposphere by using remote-sensing sensors. In particular, the system aims at estimating the amount of NO2 resulting from biomass burning by exploiting the synergies between the GOME and the ATSR-2 sensors mounted on board of the ERS-2 satellite. Two different approaches to the estimation of NO2 are proposed. The former, which is the simpler one, assumes a linear relationship between the GOME and ATSR-2 measurements and the NO2 concentration. The latter exploits a nonlinear and nonparametric method based on a radial basis function (RBF) neural network. The architecture of such a network is defined in order to retrieve the values of NO2 concentration on the basis of the GOME and ATSR-2 measurements, as well as of other ancillary input parameters. Experimental results, obtained on a real data set, confirm the effectiveness of the proposed system, which represents a promising tool for operational applications....

A system for monitoring NO2 emissions from biomass burning by using GOME and ATSR-2 data

Bruzzone, Lorenzo;
2003-01-01

Abstract

In this paper we propose a system for monitoring abnormal NO2 emissions in the troposphere by using remote-sensing sensors. In particular, the system aims at estimating the amount of NO2 resulting from biomass burning by exploiting the synergies between the GOME and the ATSR-2 sensors mounted on board of the ERS-2 satellite. Two different approaches to the estimation of NO2 are proposed. The former, which is the simpler one, assumes a linear relationship between the GOME and ATSR-2 measurements and the NO2 concentration. The latter exploits a nonlinear and nonparametric method based on a radial basis function (RBF) neural network. The architecture of such a network is defined in order to retrieve the values of NO2 concentration on the basis of the GOME and ATSR-2 measurements, as well as of other ancillary input parameters. Experimental results, obtained on a real data set, confirm the effectiveness of the proposed system, which represents a promising tool for operational applications....
2003
8
Bruzzone, Lorenzo; S., Casadio; R., Cossu; F., Sini; C., Zehner
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/74284
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 9
  • OpenAlex ND
social impact