We investigate a class of infinite-dimensional modular Lie algebras, graded over the positive integers, in which every homogeneous component has dimension one or two. We identify these Lie algebras with loop algebras of certain simple Lie algebras of Hamiltonian type. These Lie algebras are not finitely presented, but certain central extensions of them are, and we give an explicit construction for the latter.

Thin Lie algebras with diamonds of finite and infinite type

Mattarei, Sandro
2005-01-01

Abstract

We investigate a class of infinite-dimensional modular Lie algebras, graded over the positive integers, in which every homogeneous component has dimension one or two. We identify these Lie algebras with loop algebras of certain simple Lie algebras of Hamiltonian type. These Lie algebras are not finitely presented, but certain central extensions of them are, and we give an explicit construction for the latter.
2005
1
M., Avitabile; Mattarei, Sandro
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/72883
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
  • OpenAlex ND
social impact