We examined electrophysiological correlates of conscious change detection versus changeblindness for equivalent displays. Observers had to detect any changes, across a visual interruption, between a pair of successive displays. Each display comprised grey circles on a background of alternate black and white stripes. Foreground changes arose when light-grey circles turned dark-grey and vice-versa. Physically stronger background changes arose when all black stripes turned white and vice-versa. Despite their physical strength, background changes were undetected unless attention was directed to them, whereas foreground changes were invariably seen. Event-related potentials revealed that the P300 component was suppressed for unseen background changes, as compared with the same changes when seen. This effect arose first over frontal sites, and then spread to parietal sites. These results extend recent fMRI findings that fronto-parietal activation is associated with conscious visual change detection, to reveal the timing of these neural correlates.
Looking without seeing background change: electrophysiological correlates of change detection versus change blindness
Turatto, Massimo;Mazza, Veronica;
2002-01-01
Abstract
We examined electrophysiological correlates of conscious change detection versus changeblindness for equivalent displays. Observers had to detect any changes, across a visual interruption, between a pair of successive displays. Each display comprised grey circles on a background of alternate black and white stripes. Foreground changes arose when light-grey circles turned dark-grey and vice-versa. Physically stronger background changes arose when all black stripes turned white and vice-versa. Despite their physical strength, background changes were undetected unless attention was directed to them, whereas foreground changes were invariably seen. Event-related potentials revealed that the P300 component was suppressed for unseen background changes, as compared with the same changes when seen. This effect arose first over frontal sites, and then spread to parietal sites. These results extend recent fMRI findings that fronto-parietal activation is associated with conscious visual change detection, to reveal the timing of these neural correlates.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione