Let Omega be a domain in the quaternionic space H. We prove a differential criterion that characterizes Fueter-regular quaternionic functions f : Omega -> H of class C1. We find differential operators T and N, with complex coefficients, such that a function f is regular on Omega if and only if (N-j T)f=0 on \partial\Omega ( j a basic quaternion) and f is harmonic on Omega. As a consequence, by means of the identification of H with C2, we obtain a non-tangential holomorphicity condition which generalizes a result of Aronov and Kytmanov. We also show how the differential criterion and regularity are related to the dibar-Neumann problem in C^2.

Quaternionic regularity and the dibar-Neumann problem in C^2 / Perotti, Alessandro. - In: COMPLEX VARIABLES AND ELLIPTIC EQUATIONS. - ISSN 1747-6933. - STAMPA. - 52:5(2007), pp. 439-453. [10.1080/17476930601178392]

Quaternionic regularity and the dibar-Neumann problem in C^2

Perotti, Alessandro
2007-01-01

Abstract

Let Omega be a domain in the quaternionic space H. We prove a differential criterion that characterizes Fueter-regular quaternionic functions f : Omega -> H of class C1. We find differential operators T and N, with complex coefficients, such that a function f is regular on Omega if and only if (N-j T)f=0 on \partial\Omega ( j a basic quaternion) and f is harmonic on Omega. As a consequence, by means of the identification of H with C2, we obtain a non-tangential holomorphicity condition which generalizes a result of Aronov and Kytmanov. We also show how the differential criterion and regularity are related to the dibar-Neumann problem in C^2.
2007
5
Perotti, Alessandro
Quaternionic regularity and the dibar-Neumann problem in C^2 / Perotti, Alessandro. - In: COMPLEX VARIABLES AND ELLIPTIC EQUATIONS. - ISSN 1747-6933. - STAMPA. - 52:5(2007), pp. 439-453. [10.1080/17476930601178392]
File in questo prodotto:
File Dimensione Formato  
COV_2007.pdf

Solo gestori archivio

Descrizione: VOR
Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 195.09 kB
Formato Adobe PDF
195.09 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/70721
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact