A full kinetic analysis of the platinum catalyzed hydrolysis of sodium borohydride (NaBH4) in alkaline media has been performed using 11B NMR (nuclear magnetic resonance) spectroscopy with a Pt/C 5 wt % commercial powder as catalyst. By fitting the NMR data by least-square regression techniques, the rate constants of platinum catalyzed borohydride hydrolysis have been evaluated. Within the investigated [borohydride]/[catalyst] molar ratio of 200-1500, the rate law has been found to be of first-order in catalyst and zero order in borohydride. Whereas no reagent-isotope kinetic effect is observed in the NaBD4/H2O reaction system, the hydrolysis of NaBH4 in deuterated water shows a significant solvent-kinetic isotope effect. In both cases, however, 11B NMR analysis indicates that the main reaction product is the tetrahydroxyborate species (D)nH4-nBO4 - (n ) 1, 2, 3, 4) followed by a minor amount of the partially scrambled BH3D- species while the hydrolysis-intermediates HnB(OD)4-n - (n ) 1, 2, 3) species are not detectable during all the reaction time. These results suggest that, differently from the Pd catalyzed/borohydride(borodeuteride) hydrolytic process, the hydrogen/deuterium exchange is slower than hydrolysis and that the rate-determining step of the overall process is the formation of the monohydroxy-borohydride intermediate BH3OH-. The activation energy of the overall process has been also evaluated by 11B NMR rate measurements taken at different temperatures.

Kinetic features of the platinum catalyzed hydrolysis of sodium borohydride from B-11 NMR measurements

Guella, Graziano;Patton, Barbara;Miotello, Antonio
2007-01-01

Abstract

A full kinetic analysis of the platinum catalyzed hydrolysis of sodium borohydride (NaBH4) in alkaline media has been performed using 11B NMR (nuclear magnetic resonance) spectroscopy with a Pt/C 5 wt % commercial powder as catalyst. By fitting the NMR data by least-square regression techniques, the rate constants of platinum catalyzed borohydride hydrolysis have been evaluated. Within the investigated [borohydride]/[catalyst] molar ratio of 200-1500, the rate law has been found to be of first-order in catalyst and zero order in borohydride. Whereas no reagent-isotope kinetic effect is observed in the NaBD4/H2O reaction system, the hydrolysis of NaBH4 in deuterated water shows a significant solvent-kinetic isotope effect. In both cases, however, 11B NMR analysis indicates that the main reaction product is the tetrahydroxyborate species (D)nH4-nBO4 - (n ) 1, 2, 3, 4) followed by a minor amount of the partially scrambled BH3D- species while the hydrolysis-intermediates HnB(OD)4-n - (n ) 1, 2, 3) species are not detectable during all the reaction time. These results suggest that, differently from the Pd catalyzed/borohydride(borodeuteride) hydrolytic process, the hydrogen/deuterium exchange is slower than hydrolysis and that the rate-determining step of the overall process is the formation of the monohydroxy-borohydride intermediate BH3OH-. The activation energy of the overall process has been also evaluated by 11B NMR rate measurements taken at different temperatures.
2007
50
Guella, Graziano; Patton, Barbara; Miotello, Antonio
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/69627
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact