The effect of the inclusion into cyclodextrins (CD) cavity on the low-frequency vibrational dynamics of the anti-inflammatory drug ibuprofen (IBP) is here investigated by using Raman and inelastic neutron scattering (INS) experiments. The differences observed in the frequency regime 0-100 cm(-1) between the vibrational modes of uncomplexed racemic and enantiomeric IBP are discussed on the basis of comparison with the quantum chemical computation results, taking into account the distinct symmetry properties of the molecules involved in the formation of the host-guest complex. Subsequently, the inspection of the same frequency range in the spectra of pure host methyl-beta-CD and its IBP-inclusion complexes allows one to identify significant modifications in the vibrational dynamics of the guest molecule after their confinement into CD cavity. The experimental Raman and neutron spectra and the derived Raman coupling function C-R(omega) show that the complexation process gives rise to a complete amorphization of the drug, as well as to a partial hindering, in the vibrational dynamics of complexes, of the modes between SO and 150 cm(-1) attributed to CD molecule. The comparison between the Raman and neutron spectra of free and complexed IBP in the energy range of the Boson peak (BP) gives evidence that the dynamics related to this specific vibrational feature is sensitive to complexation phenomena. Keywords

Influence of Chirality on Vibrational and Relaxational Properties of (S)- and (R,S)-Ibuprofen/methyl-β-cyclodextrin Inclusion Complexes: An INS and QENS Study

Guella, Graziano;Mancini, Ines;Rossi, Barbara;
2013-01-01

Abstract

The effect of the inclusion into cyclodextrins (CD) cavity on the low-frequency vibrational dynamics of the anti-inflammatory drug ibuprofen (IBP) is here investigated by using Raman and inelastic neutron scattering (INS) experiments. The differences observed in the frequency regime 0-100 cm(-1) between the vibrational modes of uncomplexed racemic and enantiomeric IBP are discussed on the basis of comparison with the quantum chemical computation results, taking into account the distinct symmetry properties of the molecules involved in the formation of the host-guest complex. Subsequently, the inspection of the same frequency range in the spectra of pure host methyl-beta-CD and its IBP-inclusion complexes allows one to identify significant modifications in the vibrational dynamics of the guest molecule after their confinement into CD cavity. The experimental Raman and neutron spectra and the derived Raman coupling function C-R(omega) show that the complexation process gives rise to a complete amorphization of the drug, as well as to a partial hindering, in the vibrational dynamics of complexes, of the modes between SO and 150 cm(-1) attributed to CD molecule. The comparison between the Raman and neutron spectra of free and complexed IBP in the energy range of the Boson peak (BP) gives evidence that the dynamics related to this specific vibrational feature is sensitive to complexation phenomena. Keywords
2013
V., Crupi; Guella, Graziano; S., Longeville; D., Majolino; Mancini, Ines; A., Paciaroni; Rossi, Barbara; V., Venuti
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/68973
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact