We introduce a sub-cell WENO reconstruction method to evaluate spatial derivatives in the high-order ADER scheme. The basic idea in our reconstruction is to use only r stencils to reconstruct the point-wise values of solutions and spatial derivatives for the (2r-1) th-order ADER scheme in one dimension, while in two dimensions, the dimension-by-dimension sub-cell reconstruction approach for spatial derivatives is employed. Compared with the original ADER scheme of Toro and Titarev (2002) [2] that uses the direct derivatives of reconstructed polynomials for solutions to evaluate spatial derivatives, our method not only reduces greatly the computational costs of the ADER scheme on a given mesh, but also avoids possible numerical oscillations near discontinuities, as demonstrated by a number of one- and two-dimensional numerical tests. All these tests show that the 5th-order ADER scheme based on our sub-cell reconstruction method achieves the desired accuracy, and is essentially non-oscillatory and computationally cheaper for problems with discontinuities

A sub-cell WENO reconstruction method for spatial derivatives in the ADER scheme

Toro, Eleuterio Francisco;
2013-01-01

Abstract

We introduce a sub-cell WENO reconstruction method to evaluate spatial derivatives in the high-order ADER scheme. The basic idea in our reconstruction is to use only r stencils to reconstruct the point-wise values of solutions and spatial derivatives for the (2r-1) th-order ADER scheme in one dimension, while in two dimensions, the dimension-by-dimension sub-cell reconstruction approach for spatial derivatives is employed. Compared with the original ADER scheme of Toro and Titarev (2002) [2] that uses the direct derivatives of reconstructed polynomials for solutions to evaluate spatial derivatives, our method not only reduces greatly the computational costs of the ADER scheme on a given mesh, but also avoids possible numerical oscillations near discontinuities, as demonstrated by a number of one- and two-dimensional numerical tests. All these tests show that the 5th-order ADER scheme based on our sub-cell reconstruction method achieves the desired accuracy, and is essentially non-oscillatory and computationally cheaper for problems with discontinuities
2013
J. B., Cheng; Toro, Eleuterio Francisco; S., Jiang; W. J., Tang
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/68959
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 17
social impact