Some well-known results about the $2$-density topology on $ $ (in par-ti-cu-lar in the context of the Lusin-Menchoff property) are extended to $ au_{b_m}$, i.e. the $m$-density topology on $ ^n$ with $min (n,+infty)$. Every set of finite perimeter in $ ^n$ is equivalent (in measure) to a set in $ au_{b_{m_0}}$, where $m_0=n+1+{1over n-1}$. There exists a set of finite perimeter in $ ^n$ which is not equivalent (in measure) to any member in the a.e.-modification of $ au_{b_m}$, whatever $min [n,+infty)$.

A note on some topological properties of sets with finite perimeter / Delladio, Silvano. - In: GLASGOW MATHEMATICAL JOURNAL. - ISSN 0017-0895. - ELETTRONICO. - 58 (2016):3(2016), pp. 637-647. [10.1017/S0017089515000385]

A note on some topological properties of sets with finite perimeter

Delladio, Silvano
2016-01-01

Abstract

Some well-known results about the $2$-density topology on $ $ (in par-ti-cu-lar in the context of the Lusin-Menchoff property) are extended to $ au_{b_m}$, i.e. the $m$-density topology on $ ^n$ with $min (n,+infty)$. Every set of finite perimeter in $ ^n$ is equivalent (in measure) to a set in $ au_{b_{m_0}}$, where $m_0=n+1+{1over n-1}$. There exists a set of finite perimeter in $ ^n$ which is not equivalent (in measure) to any member in the a.e.-modification of $ au_{b_m}$, whatever $min [n,+infty)$.
2016
3
Delladio, Silvano
A note on some topological properties of sets with finite perimeter / Delladio, Silvano. - In: GLASGOW MATHEMATICAL JOURNAL. - ISSN 0017-0895. - ELETTRONICO. - 58 (2016):3(2016), pp. 637-647. [10.1017/S0017089515000385]
File in questo prodotto:
File Dimensione Formato  
GMJ-14-0188.pdf

accesso aperto

Tipologia: Post-print referato (Refereed author’s manuscript)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 180.72 kB
Formato Adobe PDF
180.72 kB Adobe PDF Visualizza/Apri
div-class-title-a-note-on-some-topological-properties-of-sets-with-finite-perimeter-div.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 120.57 kB
Formato Adobe PDF
120.57 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/68948
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 12
  • OpenAlex ND
social impact