Let $X$ be a projective variety with $\Q$-factorial terminal singularities and let $L$ be an ample Cartier divisor on $X$. We prove that if $f$ is a birational contraction associated to an extremal ray $ R \subset \overline {NE(X)}$ such that $R.(K_X+(n-2)L)<0$ then $f$ is a weighted blow-up of a smooth point. We then classify divisorial contractions associated to extremal rays $R$ such that $R.(K_X+rL)<0$, where $r$ is a non-negative integer, and the fibres of $f$ have dimension less or equal to $r+1$.

Fano-Mori contractions of high length on projective varieties with terminal singularities

Andreatta, Marco;Tasin, Luca
2014-01-01

Abstract

Let $X$ be a projective variety with $\Q$-factorial terminal singularities and let $L$ be an ample Cartier divisor on $X$. We prove that if $f$ is a birational contraction associated to an extremal ray $ R \subset \overline {NE(X)}$ such that $R.(K_X+(n-2)L)<0$ then $f$ is a weighted blow-up of a smooth point. We then classify divisorial contractions associated to extremal rays $R$ such that $R.(K_X+rL)<0$, where $r$ is a non-negative integer, and the fibres of $f$ have dimension less or equal to $r+1$.
2014
1
Andreatta, Marco; Tasin, Luca
File in questo prodotto:
File Dimensione Formato  
Bull. London Math. Soc.-2014-Andreatta-185-96.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 201.7 kB
Formato Adobe PDF
201.7 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/68903
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
  • OpenAlex ND
social impact