We characterize the finite-gain Lp stability properties for hybrid dynamical systems. By defining a suitable concept of the hybrid Lp norm, we introduce hybrid storage functions and provide sufficient Lyapunov conditions for the Lp stability of hybrid systems, which cover the well-known continuous-time and discrete-time Lp stability notions as special cases. We then focus on homogeneous hybrid systems and prove a result stating the equivalence among local asymptotic stability of the origin, global exponential stability, existence of a homogeneous Lyapunov function with suitable properties for the hybrid system with no inputs, and input-to-state stability, and we show how these properties all imply Lp stability. Finally, we characterize systems with direct and reverse average dwell-time properties, and establish parallel results for this class of systems. We also make several connections to the existing results on dissipativity properties of hybrid dynamical systems.

Finite-gain Lp stability for hybrid dynamical systems

Zaccarian, Luca
2013-01-01

Abstract

We characterize the finite-gain Lp stability properties for hybrid dynamical systems. By defining a suitable concept of the hybrid Lp norm, we introduce hybrid storage functions and provide sufficient Lyapunov conditions for the Lp stability of hybrid systems, which cover the well-known continuous-time and discrete-time Lp stability notions as special cases. We then focus on homogeneous hybrid systems and prove a result stating the equivalence among local asymptotic stability of the origin, global exponential stability, existence of a homogeneous Lyapunov function with suitable properties for the hybrid system with no inputs, and input-to-state stability, and we show how these properties all imply Lp stability. Finally, we characterize systems with direct and reverse average dwell-time properties, and establish parallel results for this class of systems. We also make several connections to the existing results on dissipativity properties of hybrid dynamical systems.
2013
8
Dragan, Nešić; Andrew R., Teel; Giorgio, Valmorbida; Zaccarian, Luca
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/68036
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 37
  • ???jsp.display-item.citation.isi??? 36
  • OpenAlex ND
social impact