This paper concerns a class of stochastic parabolic equations with nonlinear boundary conditions and boundary noise, which is either a Wiener process or a fractional Brownian motion with Hurst parameter H > 1/2. Boundary degeneracy of the solution is already known in the literature; we show that in our framework we can overcome this difficulty and treat a nonlinear perturbation term on the boundary. The boundary nonlinear term is either Lipschitz continuous or a maximal monotone mapping.

A STOCHASTIC PARABOLIC EQUATION WITH NONLINEAR FLUX ON THE BOUNDARY DRIVEN BY A GAUSSIAN NOISE

Barbu, Viorel;Bonaccorsi, Stefano;Tubaro, Luciano
2014-01-01

Abstract

This paper concerns a class of stochastic parabolic equations with nonlinear boundary conditions and boundary noise, which is either a Wiener process or a fractional Brownian motion with Hurst parameter H > 1/2. Boundary degeneracy of the solution is already known in the literature; we show that in our framework we can overcome this difficulty and treat a nonlinear perturbation term on the boundary. The boundary nonlinear term is either Lipschitz continuous or a maximal monotone mapping.
2014
1
Barbu, Viorel; Bonaccorsi, Stefano; Tubaro, Luciano
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/67532
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact