Much research on human action recognition has been oriented toward the performance gain on lab-collected datasets. Yet real-world videos are more diverse, with more complicated actions and often only a few of them are precisely labeled. Thus, recognizing actions from these videos is a tough mission. The paucity of labeled real-world videos motivates us to "borrow" strength from other resources. Specifically, considering that many lab datasets are available, we propose to harness lab datasets to facilitate the action recognition in real-world videos given that the lab and real-world datasets are related. As their action categories are usually inconsistent, we design a multi-task learning framework to jointly optimize the classifiers for both sides. The general Schatten $$p$ $ p -norm is exerted on the two classifiers to explore the shared knowledge between them. In this way, our framework is able to mine the shared knowledge between two datasets even if the two have different action cat...

Harnessing Lab Knowledge for Real-world Action Recognition

Ma, Zhigang;Sebe, Niculae;
2014-01-01

Abstract

Much research on human action recognition has been oriented toward the performance gain on lab-collected datasets. Yet real-world videos are more diverse, with more complicated actions and often only a few of them are precisely labeled. Thus, recognizing actions from these videos is a tough mission. The paucity of labeled real-world videos motivates us to "borrow" strength from other resources. Specifically, considering that many lab datasets are available, we propose to harness lab datasets to facilitate the action recognition in real-world videos given that the lab and real-world datasets are related. As their action categories are usually inconsistent, we design a multi-task learning framework to jointly optimize the classifiers for both sides. The general Schatten $$p$ $ p -norm is exerted on the two classifiers to explore the shared knowledge between them. In this way, our framework is able to mine the shared knowledge between two datasets even if the two have different action cat...
2014
1-2
Ma, Zhigang; Y., Yang; F., Nie; Sebe, Niculae; S., Yan; A., Hauptmann
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/66861
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 34
  • OpenAlex 70
social impact