The genesis of complex ventricular rhythms during atrial tachyarrhythmias in humans is not fully understood. To clarify the dynamics of atrioventricular (AV) conduction in response to a regular high-rate atrial activation, 29 episodes of spontaneous or pacing-induced atrial flutter (AFL), covering a wide range of atrial rates (cycle lengths from 145 to 270 ms), were analyzed in 10 patients. AV patterns were identified by applying firing sequence and surrogate data analysis to atrial and ventricular activation series, whereas modular simulation with a difference-equation AV node model was used to correlate the patterns with specific nodal properties. AV node response at high atrial rate was characterized by 1) AV patterns of decreasing conduction ratios at the shortening of atrial cycle length (from 236.3 ± 32.4 to 172.6 ± 17.8 ms) according to a Farey sequence ordering (conduction ratio from 0.34 ± 0.12 to 0.23 ± 0.06; P < 0.01); 2) the appearance of high-order alternating Wenckebach rhythms, such as 6:2, 10:2, and 12:2, associated with ventricular interval oscillations of large amplitude (407.7 ± 150.4 ms); and 3) the deterioration of pattern stability at advanced levels of block, with the percentage of stable patterns decreasing from 64.3 ± 35.2% to 28.3 ± 34.5% (P < 0.01). Simulations suggested these patterns to originate from the combined effect of nodal recovery, dual pathway physiology, and concealed conduction. These results indicate that intrinsic nodal properties may account for the wide spectrum of AV block patterns occurring during regular atrial tachyarrhythmias. The characterization of AV nodal function during different AFL forms constitutes an intermediate step toward the understanding of complex ventricular rhythms during atrial fibrillation.

Nodal recovery, dual pathway physiology and concealed conduction determine complex AV dynamics in human atrial tachyarrhythmias / Masè, M; Glass, L; Disertori, M; Ravelli, F.. - In: AMERICAN JOURNAL OF PHYSIOLOGY. HEART AND CIRCULATORY PHYSIOLOGY. - ISSN 0363-6135. - 303:(2012), pp. H1219-H1228. [10.1152/ajpheart.00228.2012]

Nodal recovery, dual pathway physiology and concealed conduction determine complex AV dynamics in human atrial tachyarrhythmias

Masè, M;Ravelli, F.
2012-01-01

Abstract

The genesis of complex ventricular rhythms during atrial tachyarrhythmias in humans is not fully understood. To clarify the dynamics of atrioventricular (AV) conduction in response to a regular high-rate atrial activation, 29 episodes of spontaneous or pacing-induced atrial flutter (AFL), covering a wide range of atrial rates (cycle lengths from 145 to 270 ms), were analyzed in 10 patients. AV patterns were identified by applying firing sequence and surrogate data analysis to atrial and ventricular activation series, whereas modular simulation with a difference-equation AV node model was used to correlate the patterns with specific nodal properties. AV node response at high atrial rate was characterized by 1) AV patterns of decreasing conduction ratios at the shortening of atrial cycle length (from 236.3 ± 32.4 to 172.6 ± 17.8 ms) according to a Farey sequence ordering (conduction ratio from 0.34 ± 0.12 to 0.23 ± 0.06; P < 0.01); 2) the appearance of high-order alternating Wenckebach rhythms, such as 6:2, 10:2, and 12:2, associated with ventricular interval oscillations of large amplitude (407.7 ± 150.4 ms); and 3) the deterioration of pattern stability at advanced levels of block, with the percentage of stable patterns decreasing from 64.3 ± 35.2% to 28.3 ± 34.5% (P < 0.01). Simulations suggested these patterns to originate from the combined effect of nodal recovery, dual pathway physiology, and concealed conduction. These results indicate that intrinsic nodal properties may account for the wide spectrum of AV block patterns occurring during regular atrial tachyarrhythmias. The characterization of AV nodal function during different AFL forms constitutes an intermediate step toward the understanding of complex ventricular rhythms during atrial fibrillation.
2012
Masè, M; Glass, L; Disertori, M; Ravelli, F.
Nodal recovery, dual pathway physiology and concealed conduction determine complex AV dynamics in human atrial tachyarrhythmias / Masè, M; Glass, L; Disertori, M; Ravelli, F.. - In: AMERICAN JOURNAL OF PHYSIOLOGY. HEART AND CIRCULATORY PHYSIOLOGY. - ISSN 0363-6135. - 303:(2012), pp. H1219-H1228. [10.1152/ajpheart.00228.2012]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/66344
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 15
social impact