Visual attributes can be considered as a middle-level semantic cue that bridges the gap between low-level image features and high-level object classes. Thus, attributes have the advantage of transcending specific semantic categories or describing objects across categories. Since attributes are often human-nameable and domain specific, much work constructs attribute annotations ad hoc or take them from an application-dependent ontology. To facilitate other applications with attributes, it is necessary to develop methods which can adapt a well-defined set of attributes to novel images. In this paper, we propose a framework for image attribute adaptation. The goal is to automatically adapt the knowledge of attributes from a well-defined auxiliary image set to a target image set, thus assisting in predicting appropriate attributes for target images. In the proposed framework, we use a non-linear mapping function corresponding to multiple base kernels to map each training images of both the...
Image Attribute Adaptation
Ma, Zhigang;Sebe, Niculae;
2014-01-01
Abstract
Visual attributes can be considered as a middle-level semantic cue that bridges the gap between low-level image features and high-level object classes. Thus, attributes have the advantage of transcending specific semantic categories or describing objects across categories. Since attributes are often human-nameable and domain specific, much work constructs attribute annotations ad hoc or take them from an application-dependent ontology. To facilitate other applications with attributes, it is necessary to develop methods which can adapt a well-defined set of attributes to novel images. In this paper, we propose a framework for image attribute adaptation. The goal is to automatically adapt the knowledge of attributes from a well-defined auxiliary image set to a target image set, thus assisting in predicting appropriate attributes for target images. In the proposed framework, we use a non-linear mapping function corresponding to multiple base kernels to map each training images of both the...I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione



