In this paper we study a system of stochastic differential equations with dissipative non-linearity which arise incertain neurobiology models. Besides proving existence,unique ness and continuous dependence on the initial datum, we shall mainly be concerned with the asymptotic behaviour of the solution. We prove the existence of an invariant ergodic measure nu associated with the transition semigroup P-t; further, we identify its infinitesimal generator in the space L-2 (H;nu).

Analysis of the stochastic FitzHugh-Nagumo system

Bonaccorsi, Stefano;Mastrogiacomo, Elisa
2008

Abstract

In this paper we study a system of stochastic differential equations with dissipative non-linearity which arise incertain neurobiology models. Besides proving existence,unique ness and continuous dependence on the initial datum, we shall mainly be concerned with the asymptotic behaviour of the solution. We prove the existence of an invariant ergodic measure nu associated with the transition semigroup P-t; further, we identify its infinitesimal generator in the space L-2 (H;nu).
3
Bonaccorsi, Stefano; Mastrogiacomo, Elisa
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11572/65953
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 15
social impact