The present paper is aimed at investigating the behaviour of fatigue cracks emanating from edge-notches for two different microstructures of the Ti-6246 alloy, produced by two specific thermo-mechanical treatments and defined as β-annealed and β-processed, respectively. Pulsating four point bending tests were performed on double-edge-notched specimens. The initiation and early propagation of fatigue cracks were investigated at two relatively high nominal stress levels corresponding to 88 and 58% of the 0.2% material’s yield stress. Plastic deformation at the notch tip initially produced a local stress redistribution followed by elastic shake down due to the high cyclic strain hardening rates exhibited by both microstructures, as confirmed by finite element modelling. Crack closure effects, measured by an extensometric technique, and variations in crack aspect ratio were considered in the ΔK calculation. The obtained crack growth rate data were compared with those of long cracks measured on standard C(T) specimens as well as of microcracks measured on round, unnotched S–N type of specimens to evaluate the intrinsic fatigue crack propagation resistance of the two microstructures. The contribution of notch plasticization to crack closure was estimated by finite element modelling.

The effect of notch plasticity on the behaviour of fatigue cracks emanating from edge-notches in high-strength beta-titanium alloys

Benedetti, Matteo;Fontanari, Vigilio;
2008-01-01

Abstract

The present paper is aimed at investigating the behaviour of fatigue cracks emanating from edge-notches for two different microstructures of the Ti-6246 alloy, produced by two specific thermo-mechanical treatments and defined as β-annealed and β-processed, respectively. Pulsating four point bending tests were performed on double-edge-notched specimens. The initiation and early propagation of fatigue cracks were investigated at two relatively high nominal stress levels corresponding to 88 and 58% of the 0.2% material’s yield stress. Plastic deformation at the notch tip initially produced a local stress redistribution followed by elastic shake down due to the high cyclic strain hardening rates exhibited by both microstructures, as confirmed by finite element modelling. Crack closure effects, measured by an extensometric technique, and variations in crack aspect ratio were considered in the ΔK calculation. The obtained crack growth rate data were compared with those of long cracks measured on standard C(T) specimens as well as of microcracks measured on round, unnotched S–N type of specimens to evaluate the intrinsic fatigue crack propagation resistance of the two microstructures. The contribution of notch plasticization to crack closure was estimated by finite element modelling.
2008
2
Benedetti, Matteo; Fontanari, Vigilio; G., Lutjering; J., Albrecht
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/62565
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact