In this article, we propose a new class of finite volume schemes of arbitrary accuracy in space and time for systems of hyperbolic balance laws with stiff source terms. The new class of schemes is based on a three stage procedure. First a high-order WENO reconstruction procedure is applied to the cell averages at the current time level. Second, the temporal evolution of the reconstruction polynomials is computed locally inside each cell using the governing equations. In the original ENO scheme of Harten et al. and in the ADER schemes of Titarev and Toro, this time evolution is achieved via a Taylor series expansion where the time derivatives are computed by repeated differentiation of the governing PDE with respect to space and time, i.e. by applying the so-called Cauchy-Kovalewski procedure. However, this approach is not able to handle stiff source terms. Therefore, we present a new strategy that only replaces the Cauchy-Kovalewski procedure compared to the previously mentioned schemes. For the time-evolution part of the algorithm, we introduce a local space-time discontinuous Galerkin (DG) finite element scheme that is able to handle also stiff source terms. This step is the only part of the algorithm which is locally implicit. The third and last step of the proposed ADER finite volume schemes consists of the standard explicit space-time integration over each control volume, using the local space-time DG solutions at the Gaussian integration points for the intercell fluxes and for the space-time integral over the source term. We will show numerical convergence studies for nonlinear systems in one space dimension with both non-stiff and with very stiff source terms up to sixth order of accuracy in space and time. The application of the new method to a large set of different test cases is shown, in particular the stiff scalar model problem of LeVeque and Yee [R.J. LeVeque, H.C. Yee, A study of numerical methods for hyperbolic conservation laws with stiff source terms, Journal of Computational Physics 86 (1) (1990) 187-210], the relaxation system of Jin and Xin [S. Jin, Z. Xin, The relaxation schemes for systems of conservation laws in arbitrary space dimensions, Communications on Pure and Applied Mathematics 48 (1995) 235-277] and the full compressible Euler equations with stiff friction source terms.
Finite Volume Schemes of Very High Order of Accuracy for Stiff Hyperbolic Balance Laws
Dumbser, Michael;Toro, Eleuterio Francisco
2008-01-01
Abstract
In this article, we propose a new class of finite volume schemes of arbitrary accuracy in space and time for systems of hyperbolic balance laws with stiff source terms. The new class of schemes is based on a three stage procedure. First a high-order WENO reconstruction procedure is applied to the cell averages at the current time level. Second, the temporal evolution of the reconstruction polynomials is computed locally inside each cell using the governing equations. In the original ENO scheme of Harten et al. and in the ADER schemes of Titarev and Toro, this time evolution is achieved via a Taylor series expansion where the time derivatives are computed by repeated differentiation of the governing PDE with respect to space and time, i.e. by applying the so-called Cauchy-Kovalewski procedure. However, this approach is not able to handle stiff source terms. Therefore, we present a new strategy that only replaces the Cauchy-Kovalewski procedure compared to the previously mentioned schemes. For the time-evolution part of the algorithm, we introduce a local space-time discontinuous Galerkin (DG) finite element scheme that is able to handle also stiff source terms. This step is the only part of the algorithm which is locally implicit. The third and last step of the proposed ADER finite volume schemes consists of the standard explicit space-time integration over each control volume, using the local space-time DG solutions at the Gaussian integration points for the intercell fluxes and for the space-time integral over the source term. We will show numerical convergence studies for nonlinear systems in one space dimension with both non-stiff and with very stiff source terms up to sixth order of accuracy in space and time. The application of the new method to a large set of different test cases is shown, in particular the stiff scalar model problem of LeVeque and Yee [R.J. LeVeque, H.C. Yee, A study of numerical methods for hyperbolic conservation laws with stiff source terms, Journal of Computational Physics 86 (1) (1990) 187-210], the relaxation system of Jin and Xin [S. Jin, Z. Xin, The relaxation schemes for systems of conservation laws in arbitrary space dimensions, Communications on Pure and Applied Mathematics 48 (1995) 235-277] and the full compressible Euler equations with stiff friction source terms.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione