Background: Prediction of disulfide bridges from protein sequences is useful for characterizing structural and functional properties of proteins. Several methods based on different machine learning algorithms have been applied to solve this problem and public domain prediction services exist. These methods are however still potentially subject to significant improvements both in terms of prediction accuracy and overall architectural complexity. Results: We introduce new methods for predicting disulfide bridges from protein sequences. The methods take advantage of two new decomposition kernels for measuring the similarity between protein sequences according to the amino acid environments around cysteines. Disulfide connectivity is predicted in two passes. First, a binary classifier is trained to predict whether a given protein chain has at least one intra-chain disulfide bridge. Second, a multiclass classifier (plemented by 1-nearest neighbor) is trained to predict connectivity patterns...

A simplified approach to disulfide connectivity prediction from protein sequences

Passerini, Andrea;
2008-01-01

Abstract

Background: Prediction of disulfide bridges from protein sequences is useful for characterizing structural and functional properties of proteins. Several methods based on different machine learning algorithms have been applied to solve this problem and public domain prediction services exist. These methods are however still potentially subject to significant improvements both in terms of prediction accuracy and overall architectural complexity. Results: We introduce new methods for predicting disulfide bridges from protein sequences. The methods take advantage of two new decomposition kernels for measuring the similarity between protein sequences according to the amino acid environments around cysteines. Disulfide connectivity is predicted in two passes. First, a binary classifier is trained to predict whether a given protein chain has at least one intra-chain disulfide bridge. Second, a multiclass classifier (plemented by 1-nearest neighbor) is trained to predict connectivity patterns...
2008
20
M., Vincent; Passerini, Andrea; M., Labbe'; P., Frasconi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/60323
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 16
  • OpenAlex ND
social impact