Tautomerism of the nucleobase uracil is characterized in the gas phase through IR photodissociation spectroscopy of singly hydrated protonated uracil created with tandem mass spectrometric methods in a commercially available Fourier transform ion cyclotron resonance mass spectrometer. Protonated uracil ions generated by electrospray ionization are re-solvated in a low-pressure collision cell filled with a mixture of water vapor seeded in argon. Their structure is investigated by IR photodissociation spectroscopy in the NH and OH stretching region (2500-3800 cm-1) with a tabletop IR laser source and in the 1000-2000 cm-1 range with a free-electron laser. In both regions the IR photodissociation spectrum exhibits well-resolved spectral signatures that point to the presence of two different types of structure for monohydrated protonated uracil, which result from the two lowest-energy tautomers of uracil. Ab initio calculations confirm that no water-catalyzed tautomerization occurs during the re-solvation process, indicating that the two protonated forms of uracil directly originate from the electrospray process.
Tautomerism of Uracil Probed via Infrared Spectroscopy of Singly Hydrated Protonated Uracil / J. M., Bakker; R. K., Sinha; T., Besson; Brugnara, Marco; Tosi, Paolo; J. Y., Salpin; P., Maitre. - In: JOURNAL OF PHYSICAL CHEMISTRY. A, MOLECULES, SPECTROSCOPY, KINETICS, ENVIRONMENT, & GENERAL THEORY. - ISSN 1089-5639. - STAMPA. - vol. 112:no. 48(2008), pp. 12393-12400. [10.1021/jp806396t]
Tautomerism of Uracil Probed via Infrared Spectroscopy of Singly Hydrated Protonated Uracil
Brugnara, Marco;Tosi, Paolo;
2008-01-01
Abstract
Tautomerism of the nucleobase uracil is characterized in the gas phase through IR photodissociation spectroscopy of singly hydrated protonated uracil created with tandem mass spectrometric methods in a commercially available Fourier transform ion cyclotron resonance mass spectrometer. Protonated uracil ions generated by electrospray ionization are re-solvated in a low-pressure collision cell filled with a mixture of water vapor seeded in argon. Their structure is investigated by IR photodissociation spectroscopy in the NH and OH stretching region (2500-3800 cm-1) with a tabletop IR laser source and in the 1000-2000 cm-1 range with a free-electron laser. In both regions the IR photodissociation spectrum exhibits well-resolved spectral signatures that point to the presence of two different types of structure for monohydrated protonated uracil, which result from the two lowest-energy tautomers of uracil. Ab initio calculations confirm that no water-catalyzed tautomerization occurs during the re-solvation process, indicating that the two protonated forms of uracil directly originate from the electrospray process.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione