We present a machine learning method to discriminate between cysteines involved in ligand binding and cysteines forming disulfide bridges. Our method uses a window of multiple alignment profiles to represent each instance and support vector machines with a polynomial kernel as the learning algorithm. We also report results obtained with two new kernel functions based on similarity matrices. Experimental results indicate that binding type can be predicted at significantly higher accuracy than using PROSITE patterns.

Learning to discriminate between ligand-bound and disulfide-bound cysteines

Passerini, Andrea;
2004-01-01

Abstract

We present a machine learning method to discriminate between cysteines involved in ligand binding and cysteines forming disulfide bridges. Our method uses a window of multiple alignment profiles to represent each instance and support vector machines with a polynomial kernel as the learning algorithm. We also report results obtained with two new kernel functions based on similarity matrices. Experimental results indicate that binding type can be predicted at significantly higher accuracy than using PROSITE patterns.
2004
4
Passerini, Andrea; P., Frasconi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/51223
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 17
  • OpenAlex ND
social impact