Accurate predictions of metal-binding sites in proteins by using sequence as the only source of information can significantly help in the prediction of protein structure and function, genome annotation, and in the experimental determination of protein structure. Here, we introduce a method for identifying histidines and cysteines that participate in binding of several transition metals and iron complexes. The method predicts histidines as being in either of two states (free or metal bound) and cysteines in either of three states (free, metal bound, or in disulfide bridges). The method uses only sequence information by utilizing position-specific evolutionary profiles as well as more global descriptors such as protein length and amino acid composition. Our solution is based on a two-stage machine-learning approach. The first stage consists of a support vector machine trained to locally classify the binding state of single histidines and cysteines. The second stage consists of a bidirect...
Identifying cysteines and histidines in transition-metal-binding sites using support vector machines and neural networks
Passerini, Andrea;
2006-01-01
Abstract
Accurate predictions of metal-binding sites in proteins by using sequence as the only source of information can significantly help in the prediction of protein structure and function, genome annotation, and in the experimental determination of protein structure. Here, we introduce a method for identifying histidines and cysteines that participate in binding of several transition metals and iron complexes. The method predicts histidines as being in either of two states (free or metal bound) and cysteines in either of three states (free, metal bound, or in disulfide bridges). The method uses only sequence information by utilizing position-specific evolutionary profiles as well as more global descriptors such as protein length and amino acid composition. Our solution is based on a two-stage machine-learning approach. The first stage consists of a support vector machine trained to locally classify the binding state of single histidines and cysteines. The second stage consists of a bidirect...I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione



