Ezrin, an actin-binding protein, orchestrates the organization of the cortical cytoskeleton and plasma membrane during cell migration, adhesion, and proliferation. Its role in monocytes/macrophages (MΦs) is less understood. Here, we used a monocyte/MΦ-specific ezrin knock-out mouse model to investigate the contribution of ezrin to monocyte recruitment and adaptation to the lung extracellular matrix (ECM) in response to lipopolysaccharide (LPS). Our study revealed that LPS induces ezrin expression in monocytes/MΦs and is essential for monocytes to adhere to lung ECM, proliferate, and differentiate into tissue-resident interstitial MΦs. Mechanistically, the loss of ezrin in monocytes disrupts activation of focal adhesion kinase and AKT serine-threonine protein kinase signaling, essential for lung-recruited monocytes and monocyte-derived MΦs to adhere to the ECM, proliferate, and survive. In summary, our data show that ezrin plays a role beyond structural cellular support, influencing diverse monocytes/MΦ processes and signaling pathways during inflammation, facilitating their differentiation into tissue-resident macrophages. (Figure presented.)

Ezrin drives adaptation of monocytes to the inflamed lung microenvironment / Gudneppanavar, Ravindra; Di Pietro, Caterina; H Oz, Hasan H.; Zhang, Ping-Xia; Cheng, Ee-Chun; Huang, Pamela H.; Tebaldi, Toma; Biancon, Giulia; Halene, Stephanie; Hoppe, Adam D.; Kim, Catherine; Gonzalez, Anjelica L.; Krause, Diane S.; Egan, Marie E.; Gupta, Neetu; Murray, Thomas S.; Bruscia, Emanuela M.. - In: CELL DEATH & DISEASE. - ISSN 2041-4889. - 15:11(2024), pp. 86401-86417. [10.1038/s41419-024-07255-8]

Ezrin drives adaptation of monocytes to the inflamed lung microenvironment

Tebaldi, Toma;
2024-01-01

Abstract

Ezrin, an actin-binding protein, orchestrates the organization of the cortical cytoskeleton and plasma membrane during cell migration, adhesion, and proliferation. Its role in monocytes/macrophages (MΦs) is less understood. Here, we used a monocyte/MΦ-specific ezrin knock-out mouse model to investigate the contribution of ezrin to monocyte recruitment and adaptation to the lung extracellular matrix (ECM) in response to lipopolysaccharide (LPS). Our study revealed that LPS induces ezrin expression in monocytes/MΦs and is essential for monocytes to adhere to lung ECM, proliferate, and differentiate into tissue-resident interstitial MΦs. Mechanistically, the loss of ezrin in monocytes disrupts activation of focal adhesion kinase and AKT serine-threonine protein kinase signaling, essential for lung-recruited monocytes and monocyte-derived MΦs to adhere to the ECM, proliferate, and survive. In summary, our data show that ezrin plays a role beyond structural cellular support, influencing diverse monocytes/MΦ processes and signaling pathways during inflammation, facilitating their differentiation into tissue-resident macrophages. (Figure presented.)
2024
11
Settore BIO/11 - Biologia Molecolare
Settore BIOS-08/A - Biologia molecolare
Gudneppanavar, Ravindra; Di Pietro, Caterina; H Oz, Hasan H.; Zhang, Ping-Xia; Cheng, Ee-Chun; Huang, Pamela H.; Tebaldi, Toma; Biancon, Giulia; Halen...espandi
Ezrin drives adaptation of monocytes to the inflamed lung microenvironment / Gudneppanavar, Ravindra; Di Pietro, Caterina; H Oz, Hasan H.; Zhang, Ping-Xia; Cheng, Ee-Chun; Huang, Pamela H.; Tebaldi, Toma; Biancon, Giulia; Halene, Stephanie; Hoppe, Adam D.; Kim, Catherine; Gonzalez, Anjelica L.; Krause, Diane S.; Egan, Marie E.; Gupta, Neetu; Murray, Thomas S.; Bruscia, Emanuela M.. - In: CELL DEATH & DISEASE. - ISSN 2041-4889. - 15:11(2024), pp. 86401-86417. [10.1038/s41419-024-07255-8]
File in questo prodotto:
File Dimensione Formato  
2024_CDD_Gudneppanavar.pdf

accesso aperto

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Creative commons
Dimensione 7.23 MB
Formato Adobe PDF
7.23 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/466578
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
  • OpenAlex ND
social impact