Solar hydrogen production currently employs pure water to prevent side reactions and damage to materials. Nevertheless, pure water is an increasingly valuable resource, and alternative substrates are required. In this work, we investigated a strategy for photoelectrochemical (PEC) solar hydrogen production from surfactant-rich wastewater. Sodium dodecyl sulfate (SDS) was used as a test-surfactant because of (1) its large use in industrial and domestic applications and consequently relevant concentration in wastewaters and (2) its potential suitability as a hole scavenger to enhance H2production. The working electrode of the PEC cell was a Ti-doped hematite photoanode, fully characterized to obtain information about crystallinity, morphology, and optical properties. Ongoing mineralization of SDS at the photoanode was characterized by the Gas Chromatographic (GC) detection of CO2, with a radical-mediated oxidation mechanism revealed by fluorescence-based methods and Electrochemical Impedance Spectroscopy (EIS). H2production with simultaneous SDS oxidation and oxygen evolution, at 2.15 V RHE applied voltage, was quantified by GC. With a 1 cm2electrode, the production rate was 4.6 ± 0.3 μmol/h with a power saving efficiency (η, with respect to dark conditions) of 0.3%. A scale-up to 16.8 cm2area resulted in 22 ± 2 μmol/h with a η of 0.13%. These results provide a proof-of-concept for the valorization of surfactant-rich wastewaters as solar H2substrates.

Photoelectrochemical Hydrogen Production from Surfactant-Rich Wastewaters: Proof-of-Concept and Mechanisms Investigation / Chesini, Alessandro; Grandi, Silvia; Caramori, Stefano; Mazzanti, Michele; Martini, Luca Matteo; Khan, Khakemin; Orlandi, Michele; Miotello, Antonio. - In: JOURNAL OF PHYSICAL CHEMISTRY. C.. - ISSN 1932-7455. - 129:31(2025), pp. 13860-13874. [10.1021/acs.jpcc.5c01995]

Photoelectrochemical Hydrogen Production from Surfactant-Rich Wastewaters: Proof-of-Concept and Mechanisms Investigation

Chesini, Alessandro;Mazzanti, Michele;Martini, Luca Matteo;Khan, Khakemin;Orlandi, Michele
;
Miotello, Antonio
2025-01-01

Abstract

Solar hydrogen production currently employs pure water to prevent side reactions and damage to materials. Nevertheless, pure water is an increasingly valuable resource, and alternative substrates are required. In this work, we investigated a strategy for photoelectrochemical (PEC) solar hydrogen production from surfactant-rich wastewater. Sodium dodecyl sulfate (SDS) was used as a test-surfactant because of (1) its large use in industrial and domestic applications and consequently relevant concentration in wastewaters and (2) its potential suitability as a hole scavenger to enhance H2production. The working electrode of the PEC cell was a Ti-doped hematite photoanode, fully characterized to obtain information about crystallinity, morphology, and optical properties. Ongoing mineralization of SDS at the photoanode was characterized by the Gas Chromatographic (GC) detection of CO2, with a radical-mediated oxidation mechanism revealed by fluorescence-based methods and Electrochemical Impedance Spectroscopy (EIS). H2production with simultaneous SDS oxidation and oxygen evolution, at 2.15 V RHE applied voltage, was quantified by GC. With a 1 cm2electrode, the production rate was 4.6 ± 0.3 μmol/h with a power saving efficiency (η, with respect to dark conditions) of 0.3%. A scale-up to 16.8 cm2area resulted in 22 ± 2 μmol/h with a η of 0.13%. These results provide a proof-of-concept for the valorization of surfactant-rich wastewaters as solar H2substrates.
2025
31
Chesini, Alessandro; Grandi, Silvia; Caramori, Stefano; Mazzanti, Michele; Martini, Luca Matteo; Khan, Khakemin; Orlandi, Michele; Miotello, Antonio...espandi
Photoelectrochemical Hydrogen Production from Surfactant-Rich Wastewaters: Proof-of-Concept and Mechanisms Investigation / Chesini, Alessandro; Grandi, Silvia; Caramori, Stefano; Mazzanti, Michele; Martini, Luca Matteo; Khan, Khakemin; Orlandi, Michele; Miotello, Antonio. - In: JOURNAL OF PHYSICAL CHEMISTRY. C.. - ISSN 1932-7455. - 129:31(2025), pp. 13860-13874. [10.1021/acs.jpcc.5c01995]
File in questo prodotto:
File Dimensione Formato  
chesini-et-al-2025-photoelectrochemical-hydrogen-production-from-surfactant-rich-wastewaters-proof-of-concept-and.pdf

accesso aperto

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Creative commons
Dimensione 5.49 MB
Formato Adobe PDF
5.49 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/462813
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact