The topology and symmetry group of a free boundary minimal surface in the three-dimensional Euclidean unit ball do not determine the surface uniquely. We provide pairs of non-isometric free boundary minimal surfaces having any sufficiently large genus, three boundary components and antiprismatic symmetry group of order 4(g+1).

Infinitely Many Pairs of Free Boundary Minimal Surfaces with the Same Topology and Symmetry Group / Carlotto, Alessandro; Schulz, Mario; Wiygul, David. - 313:(2025), pp. 1-127. [10.1090/memo/1591]

Infinitely Many Pairs of Free Boundary Minimal Surfaces with the Same Topology and Symmetry Group

Carlotto, Alessandro;Schulz, Mario;Wiygul, David
2025-01-01

Abstract

The topology and symmetry group of a free boundary minimal surface in the three-dimensional Euclidean unit ball do not determine the surface uniquely. We provide pairs of non-isometric free boundary minimal surfaces having any sufficiently large genus, three boundary components and antiprismatic symmetry group of order 4(g+1).
2025
Providence, Rhode Island, USA
American Mathematical Society
Carlotto, Alessandro; Schulz, Mario; Wiygul, David
Infinitely Many Pairs of Free Boundary Minimal Surfaces with the Same Topology and Symmetry Group / Carlotto, Alessandro; Schulz, Mario; Wiygul, David. - 313:(2025), pp. 1-127. [10.1090/memo/1591]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/462320
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact