As known, nonlinear loads in power systems originate harmonic distortion and power quality issues. Converter-interfaced loads exhibit a nonlinear behaviour as well and may largely contribute to increase the harmonic pollution. The nonlinearities introduced by the PLL-synchronization and power control originate, indeed, a coupling mechanism between fundamental and harmonic frequencies. These harmonic coupling effects are not captured by traditional Norton/Thevenin equivalent converter models, leading to inaccurate harmonic power flow analyses. This paper proposes a Linear Time Periodic model of a PLL-synchronized converter to be used in Harmonic Power Flow analyses. A realistic 18-bus distribution grid hosting substantial amount of power-electronic interfaced resources is used as a case study. It is revealed that, in high grid loadability condition and with distorted grid supply voltage, the harmonics are significantly amplified by the converters and the fundamental components of the buses voltages are reduced, representing a risk for the voltage stability. This phenomenon is also influenced by the tuning of the current control loop and the PLL. The accuracy of the presented analyses is validated by comparing the harmonic power flow results with time-domain simulations.

LTP Modeling and Analysis of Frequency Coupling in PLL-Synchronized Converters for Harmonic Power Flow Studies / Cecati, F.; Becker, J. K. M.; Pugliese, S.; Zuo, Y.; Liserre, M.; Paolone, M.. - In: IEEE TRANSACTIONS ON SMART GRID. - ISSN 1949-3053. - 2023, 14:4(2023), pp. 2890-2902. [10.1109/TSG.2022.3228616]

LTP Modeling and Analysis of Frequency Coupling in PLL-Synchronized Converters for Harmonic Power Flow Studies

Cecati F.
Primo
;
Pugliese S.;
2023-01-01

Abstract

As known, nonlinear loads in power systems originate harmonic distortion and power quality issues. Converter-interfaced loads exhibit a nonlinear behaviour as well and may largely contribute to increase the harmonic pollution. The nonlinearities introduced by the PLL-synchronization and power control originate, indeed, a coupling mechanism between fundamental and harmonic frequencies. These harmonic coupling effects are not captured by traditional Norton/Thevenin equivalent converter models, leading to inaccurate harmonic power flow analyses. This paper proposes a Linear Time Periodic model of a PLL-synchronized converter to be used in Harmonic Power Flow analyses. A realistic 18-bus distribution grid hosting substantial amount of power-electronic interfaced resources is used as a case study. It is revealed that, in high grid loadability condition and with distorted grid supply voltage, the harmonics are significantly amplified by the converters and the fundamental components of the buses voltages are reduced, representing a risk for the voltage stability. This phenomenon is also influenced by the tuning of the current control loop and the PLL. The accuracy of the presented analyses is validated by comparing the harmonic power flow results with time-domain simulations.
2023
4
Cecati, F.; Becker, J. K. M.; Pugliese, S.; Zuo, Y.; Liserre, M.; Paolone, M.
LTP Modeling and Analysis of Frequency Coupling in PLL-Synchronized Converters for Harmonic Power Flow Studies / Cecati, F.; Becker, J. K. M.; Pugliese, S.; Zuo, Y.; Liserre, M.; Paolone, M.. - In: IEEE TRANSACTIONS ON SMART GRID. - ISSN 1949-3053. - 2023, 14:4(2023), pp. 2890-2902. [10.1109/TSG.2022.3228616]
File in questo prodotto:
File Dimensione Formato  
LTP_Modeling_and_Analysis_of_Frequency_Coupling_in_PLL-Synchronized_Converters_for_Harmonic_Power_Flow_Studies (1).pdf

Solo gestori archivio

Descrizione: IEEE TRANSACTIONS ON SMART GRID
Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 4.2 MB
Formato Adobe PDF
4.2 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/461991
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 10
  • OpenAlex ND
social impact