Using recent results from information theory, maximum entropy (briefly, MaxEnt) and convergence in entropy of MaxEnt densities, stronger modes of convergence than convergence in distribution are obtained for absolutely continuous distributions. As a first result, an alternative proof of the Fréchet–Shohat theorem is given. Moreover, due to the flexibility of the MaxEnt entropy formalism, the new proof is valid for Hamburger, Stieltjes and Hausdorff moment problems with support $\Real$, $\Real^{+]$, $[0, 1}$, respectively.

Fréchet-Shohat theorem: stronger modes of convergence for a class of absolutely continuous distributions / Novi Inverardi, Pier Luigi; Tagliani, Aldo. - In: STATISTICS & PROBABILITY LETTERS. - ISSN 0167-7152. - STAMPA. - 2025, 226:(2025), p. 110466. [10.1016/j.spl.2025.110466]

Fréchet-Shohat theorem: stronger modes of convergence for a class of absolutely continuous distributions

Novi Inverardi, Pier Luigi
Primo
;
Tagliani, Aldo
Secondo
2025-01-01

Abstract

Using recent results from information theory, maximum entropy (briefly, MaxEnt) and convergence in entropy of MaxEnt densities, stronger modes of convergence than convergence in distribution are obtained for absolutely continuous distributions. As a first result, an alternative proof of the Fréchet–Shohat theorem is given. Moreover, due to the flexibility of the MaxEnt entropy formalism, the new proof is valid for Hamburger, Stieltjes and Hausdorff moment problems with support $\Real$, $\Real^{+]$, $[0, 1}$, respectively.
2025
Novi Inverardi, Pier Luigi; Tagliani, Aldo
Fréchet-Shohat theorem: stronger modes of convergence for a class of absolutely continuous distributions / Novi Inverardi, Pier Luigi; Tagliani, Aldo. - In: STATISTICS & PROBABILITY LETTERS. - ISSN 0167-7152. - STAMPA. - 2025, 226:(2025), p. 110466. [10.1016/j.spl.2025.110466]
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0167715225001117-main.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 552.67 kB
Formato Adobe PDF
552.67 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/457870
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex 0
social impact