The widespread emergence of antimicrobial resistance (AMR) is a serious threat to global public health and among Gram-positive cocci, Streptococcus pneumoniae constitutes a priority in the list of AMR-threatening pathogens. To counteract this fundamental problem, the bacterial cell division cycle and the crucial proteins involved in this process emerged as novel attractive targets. FtsZ is an essential cell division protein, and FtsZ inhibitors, especially the benzamide derivatives, have been exploited in the last decade. In this work, we identified, for the first time, some benzodioxane–benzamide inhibitors capable of targeting FtsZ in Streptococcus pneumoniae, in addition to their previously demonstrated activity against other bacteria. These promising benzamides, with minimal inhibitory concentrations (MICs) ranging from 25 to 80 µg/mL, demonstrated bactericidal activity against S. pneumoniae. This was evidenced by their ability to dramatically affect growth and viability, further s...
The widespread emergence of antimicrobial resistance (AMR) is a serious threat to global public health and among Gram-positive cocci, Streptococcus pneumoniae constitutes a priority in the list of AMR-threatening pathogens. To counteract this fundamental problem, the bacterial cell division cycle and the crucial proteins involved in this process emerged as novel attractive targets. FtsZ is an essential cell division protein, and FtsZ inhibitors, especially the benzamide derivatives, have been exploited in the last decade. In this work, we identified, for the first time, some benzodioxane–benzamide inhibitors capable of targeting FtsZ in Streptococcus pneumoniae, in addition to their previously demonstrated activity against other bacteria. These promising benzamides, with minimal inhibitory concentrations (MICs) ranging from 25 to 80 µg/mL, demonstrated bactericidal activity against S. pneumoniae. This was evidenced by their ability to dramatically affect growth and viability, further supported by the morphological changes observed through microscopy. Moreover, the compounds were characterized in vitro, combining turbidity measurements and confocal imaging, and significant alteration of a GTP-induced FtsZ assembly was found, in line with our previous data from other microorganisms.
Targeting Bacterial Cell Division with Benzodioxane–Benzamide FtsZ Inhibitors as a Novel Strategy to Fight Gram-Positive Ovococcal Pathogens / Furlan, Berenice; Sobrinos-Sanguino, Marta; Sammartino, Marcella; Monterroso, Begoña; Zorrilla, Silvia; Lanzini, Alessia; Suigo, Lorenzo; Valoti, Ermanno; Massidda, Orietta; Straniero, Valentina. - In: INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES. - ISSN 1422-0067. - 2025, 26:2(2025), pp. 71401-71413. [10.3390/ijms26020714]
Targeting Bacterial Cell Division with Benzodioxane–Benzamide FtsZ Inhibitors as a Novel Strategy to Fight Gram-Positive Ovococcal Pathogens
Furlan, Berenice;Massidda, Orietta
;
2025-01-01
Abstract
The widespread emergence of antimicrobial resistance (AMR) is a serious threat to global public health and among Gram-positive cocci, Streptococcus pneumoniae constitutes a priority in the list of AMR-threatening pathogens. To counteract this fundamental problem, the bacterial cell division cycle and the crucial proteins involved in this process emerged as novel attractive targets. FtsZ is an essential cell division protein, and FtsZ inhibitors, especially the benzamide derivatives, have been exploited in the last decade. In this work, we identified, for the first time, some benzodioxane–benzamide inhibitors capable of targeting FtsZ in Streptococcus pneumoniae, in addition to their previously demonstrated activity against other bacteria. These promising benzamides, with minimal inhibitory concentrations (MICs) ranging from 25 to 80 µg/mL, demonstrated bactericidal activity against S. pneumoniae. This was evidenced by their ability to dramatically affect growth and viability, further s...| File | Dimensione | Formato | |
|---|---|---|---|
|
Furlan et al_2025_ijms-26-00714.pdf
accesso aperto
Descrizione: main text
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Creative commons
Dimensione
2.84 MB
Formato
Adobe PDF
|
2.84 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione



