We compute the automorphism group of all the elements of a family of surfaces of general type with p_g = q= 2 and K^2 = 7, originally constructed by C. Rito. We discuss the consequences of our results towards the Mumford-Tate conjecture.
Automorphisms of a family of surfaces with p_g=q=2 and K^2=7 / Penegini, Matteo; Pignatelli, Roberto. - In: RENDICONTI DEL SEMINARIO MATEMATICO. - ISSN 2704-999X. - 2024, 82:1(2024), pp. 223-239.
Automorphisms of a family of surfaces with p_g=q=2 and K^2=7
Penegini, Matteo;Pignatelli, Roberto
2024-01-01
Abstract
We compute the automorphism group of all the elements of a family of surfaces of general type with p_g = q= 2 and K^2 = 7, originally constructed by C. Rito. We discuss the consequences of our results towards the Mumford-Tate conjecture.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
A14.pdf
accesso aperto
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
351.01 kB
Formato
Adobe PDF
|
351.01 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione



