We compute the automorphism group of all the elements of a family of surfaces of general type with p_g = q= 2 and K^2 = 7, originally constructed by C. Rito. We discuss the consequences of our results towards the Mumford-Tate conjecture.

Automorphisms of a family of surfaces with p_g=q=2 and K^2=7 / Penegini, Matteo; Pignatelli, Roberto. - In: RENDICONTI DEL SEMINARIO MATEMATICO. - ISSN 2704-999X. - 2024, 82:1(2024), pp. 223-239.

Automorphisms of a family of surfaces with p_g=q=2 and K^2=7

Penegini, Matteo;Pignatelli, Roberto
2024-01-01

Abstract

We compute the automorphism group of all the elements of a family of surfaces of general type with p_g = q= 2 and K^2 = 7, originally constructed by C. Rito. We discuss the consequences of our results towards the Mumford-Tate conjecture.
2024
1
Settore MAT/03 - Geometria
Settore MATH-02/B - Geometria
Penegini, Matteo; Pignatelli, Roberto
Automorphisms of a family of surfaces with p_g=q=2 and K^2=7 / Penegini, Matteo; Pignatelli, Roberto. - In: RENDICONTI DEL SEMINARIO MATEMATICO. - ISSN 2704-999X. - 2024, 82:1(2024), pp. 223-239.
File in questo prodotto:
File Dimensione Formato  
A14.pdf

accesso aperto

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 351.01 kB
Formato Adobe PDF
351.01 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/453417
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact