This study explores, for the first time, the application of electrospun biobased poly(butylene 2,5-furanoate) (PBF) and poly(pentamethylene 2,5-furanoate) (PPeF) mats in biomedical and drug delivery fields, through a careful investigation of their structure–property relationship. PBF mats, with a glass transition temperature (Tg) of 25–30 °C and an as-spun crystallinity of 18.8%, maintained their fibrous structure (fiber diameter ~1.3 µm) and mechanical properties (stiffness ~100 MPa, strength ~4.5 MPa, strain at break ~200%) under treatment in physiological conditions (37 °C, pH 7.5). In contrast, PPeF mats, being amorphous with a Tg of 14 °C, underwent significant densification, with geometrical density increasing from 0.68 g/cm³ to 1.07 g/cm³, which depressed the specific (i.e., normalized by density) mechanical properties. DSC analysis revealed that the treatment promoted crystallization in PBF (reaching 45.9% crystallinity), while PPeF showed limited, but interestingly not negligible, structural reorganization. Both materials promoted good cell adhesion and were biocompatible, with lactate dehydrogenase release not exceeding 20% after 48 h. The potential of PBF mats for drug delivery was evaluated using dexamethasone. The mats exhibited a controlled drug release profile, with ~10% drug release in 4 h and ~50% in 20 h. This study demonstrates the versatility of these biopolyesters in biomedical applications and highlights the impact of polymer structure on material performance.

Electrospun Poly(butylene 2,5-furanoate) and Poly(pentamethylene 2,5-furanoate) Mats: Structure–Property Relationships and Thermo-Mechanical and Biological Characterization / Fredi, Giulia; Santi, Sofia; Soccio, Michelina; Lotti, Nadia; Dorigato, Andrea. - In: MOLECULES. - ISSN 1420-3049. - 30:4(2025). [10.3390/molecules30040841]

Electrospun Poly(butylene 2,5-furanoate) and Poly(pentamethylene 2,5-furanoate) Mats: Structure–Property Relationships and Thermo-Mechanical and Biological Characterization

Giulia Fredi
Primo
;
sofia santi;Andrea Dorigato
Ultimo
2025-01-01

Abstract

This study explores, for the first time, the application of electrospun biobased poly(butylene 2,5-furanoate) (PBF) and poly(pentamethylene 2,5-furanoate) (PPeF) mats in biomedical and drug delivery fields, through a careful investigation of their structure–property relationship. PBF mats, with a glass transition temperature (Tg) of 25–30 °C and an as-spun crystallinity of 18.8%, maintained their fibrous structure (fiber diameter ~1.3 µm) and mechanical properties (stiffness ~100 MPa, strength ~4.5 MPa, strain at break ~200%) under treatment in physiological conditions (37 °C, pH 7.5). In contrast, PPeF mats, being amorphous with a Tg of 14 °C, underwent significant densification, with geometrical density increasing from 0.68 g/cm³ to 1.07 g/cm³, which depressed the specific (i.e., normalized by density) mechanical properties. DSC analysis revealed that the treatment promoted crystallization in PBF (reaching 45.9% crystallinity), while PPeF showed limited, but interestingly not negligible, structural reorganization. Both materials promoted good cell adhesion and were biocompatible, with lactate dehydrogenase release not exceeding 20% after 48 h. The potential of PBF mats for drug delivery was evaluated using dexamethasone. The mats exhibited a controlled drug release profile, with ~10% drug release in 4 h and ~50% in 20 h. This study demonstrates the versatility of these biopolyesters in biomedical applications and highlights the impact of polymer structure on material performance.
2025
4
Fredi, Giulia; Santi, Sofia; Soccio, Michelina; Lotti, Nadia; Dorigato, Andrea
Electrospun Poly(butylene 2,5-furanoate) and Poly(pentamethylene 2,5-furanoate) Mats: Structure–Property Relationships and Thermo-Mechanical and Biological Characterization / Fredi, Giulia; Santi, Sofia; Soccio, Michelina; Lotti, Nadia; Dorigato, Andrea. - In: MOLECULES. - ISSN 1420-3049. - 30:4(2025). [10.3390/molecules30040841]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/449432
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
  • OpenAlex ND
social impact