Neural synchrony has been suggested as a mechanism for integrating distributed sensorimotor systems involved in coordinated movement. To test the role of corticomuscular and intermuscular coherence in bimanual coordination, we experimentally manipulated the degree of coordination between hand muscles by varying the sensitivity of the visual feedback to differences in bilateral force. In 16 healthy participants, cortical activity was measured using EEG and muscle activity of the flexor pollicis brevis of both hands using high-density electromyography (HDsEMG). Using the uncontrolled manifold framework, coordination between bilateral forces was quantified by the synergy index RV in the time and frequency domain. Functional connectivity was assessed using corticomuscular coherence between muscle activity and cortical source activity and intermuscular coherence between bilateral EMG activity. The synergy index increased in the high coordination condition. RV was higher in the high coordination condition in frequencies between 0 and 0.5 Hz; for the 0.5- to 2-Hz frequency band, this pattern was inverted. Corticomuscular coherence in the beta band (16–30 Hz) was maximal in the contralateral motor cortex and was reduced in the high coordination condition. In contrast, intermuscular coherence was observed at 5–12 Hz and increased with bimanual coordination. Within-subject comparisons revealed a negative correlation between RV and corticomuscular coherence and a positive correlation between RV and intermuscular coherence. Our findings suggest two distinct neural pathways: 1) corticomuscular coherence reflects direct corticospinal projections involved in controlling individual muscles; and 2) intermuscular coherence reflects diverging pathways involved in the coordination of multiple muscles.

Functional connectivity in the neuromuscular system underlying bimanual coordination / De Vries, Ingmar Engbert Jacob; Daffertshofer, Andreas; Stegeman, Dick F.; Boonstra, Tjeerd W.. - In: JOURNAL OF NEUROPHYSIOLOGY. - ISSN 0022-3077. - 116:6(2016), pp. 2576-2585. [10.1152/jn.00460.2016]

Functional connectivity in the neuromuscular system underlying bimanual coordination

De Vries, Ingmar Engbert Jacob
Primo
;
2016-01-01

Abstract

Neural synchrony has been suggested as a mechanism for integrating distributed sensorimotor systems involved in coordinated movement. To test the role of corticomuscular and intermuscular coherence in bimanual coordination, we experimentally manipulated the degree of coordination between hand muscles by varying the sensitivity of the visual feedback to differences in bilateral force. In 16 healthy participants, cortical activity was measured using EEG and muscle activity of the flexor pollicis brevis of both hands using high-density electromyography (HDsEMG). Using the uncontrolled manifold framework, coordination between bilateral forces was quantified by the synergy index RV in the time and frequency domain. Functional connectivity was assessed using corticomuscular coherence between muscle activity and cortical source activity and intermuscular coherence between bilateral EMG activity. The synergy index increased in the high coordination condition. RV was higher in the high coordination condition in frequencies between 0 and 0.5 Hz; for the 0.5- to 2-Hz frequency band, this pattern was inverted. Corticomuscular coherence in the beta band (16–30 Hz) was maximal in the contralateral motor cortex and was reduced in the high coordination condition. In contrast, intermuscular coherence was observed at 5–12 Hz and increased with bimanual coordination. Within-subject comparisons revealed a negative correlation between RV and corticomuscular coherence and a positive correlation between RV and intermuscular coherence. Our findings suggest two distinct neural pathways: 1) corticomuscular coherence reflects direct corticospinal projections involved in controlling individual muscles; and 2) intermuscular coherence reflects diverging pathways involved in the coordination of multiple muscles.
2016
6
De Vries, Ingmar Engbert Jacob; Daffertshofer, Andreas; Stegeman, Dick F.; Boonstra, Tjeerd W.
Functional connectivity in the neuromuscular system underlying bimanual coordination / De Vries, Ingmar Engbert Jacob; Daffertshofer, Andreas; Stegeman, Dick F.; Boonstra, Tjeerd W.. - In: JOURNAL OF NEUROPHYSIOLOGY. - ISSN 0022-3077. - 116:6(2016), pp. 2576-2585. [10.1152/jn.00460.2016]
File in questo prodotto:
File Dimensione Formato  
deVries_etal_(2016)_JoNP.pdf

accesso aperto

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.01 MB
Formato Adobe PDF
2.01 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/449153
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 57
  • ???jsp.display-item.citation.isi??? 54
  • OpenAlex 66
social impact