We study smooth varieties of Picard number one admitting a special dominating family of rational curves and an equalized C∗-action. In particular we show that X is a smooth variety of Picard number one with nef tangent bundle admitting an equalized C∗-action with an isolated extremal fixed point if and only if X is an irreducible Hermitian symmetric space.

Characterizing rational homogeneous spaces via C*-actions / Occhetta, Gianluca; Sola Conde, Luis E.. - In: COLLECTANEA MATHEMATICA. - ISSN 2038-4815. - 2024:(2024), pp. 1-33. [10.1007/s13348-024-00463-7]

Characterizing rational homogeneous spaces via C*-actions

Occhetta, Gianluca;Sola Conde, Luis E.
2024-01-01

Abstract

We study smooth varieties of Picard number one admitting a special dominating family of rational curves and an equalized C∗-action. In particular we show that X is a smooth variety of Picard number one with nef tangent bundle admitting an equalized C∗-action with an isolated extremal fixed point if and only if X is an irreducible Hermitian symmetric space.
2024
Occhetta, Gianluca; Sola Conde, Luis E.
Characterizing rational homogeneous spaces via C*-actions / Occhetta, Gianluca; Sola Conde, Luis E.. - In: COLLECTANEA MATHEMATICA. - ISSN 2038-4815. - 2024:(2024), pp. 1-33. [10.1007/s13348-024-00463-7]
File in questo prodotto:
File Dimensione Formato  
OS2.pdf

Solo gestori archivio

Descrizione: online first
Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 655.96 kB
Formato Adobe PDF
655.96 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/445952
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact