In this paper, we propose a novel pattern-recognition system to identify and classify buried objects from ground-penetrating radar (GPR) imagery. The entire process is subdivided into four steps. After a preprocessing step, the GPR image is thresholded to put under light the regions containing potential objects. The third step of the system consists of automatically detecting the objects in the obtained binary image by means of a search of linear/hyperbolic patterns formulated within a genetic optimization framework. In the genetic optimizer, each chromosome models the apex position and the curvature associated with the candidate pattern, while the fitness function expresses the Hamming distance between that pattern and the binary image content. Finally, in the fourth step, the problem of the recognition of the material type of the identified objects is approached as a classification issue, which is solved by means of an opportune feature-extraction strategy and a support vector machin...

Automatic Analysis of GPR Images: A Pattern Recognition Approach

Pasolli, Edoardo;Melgani, Farid;Donelli, Massimo
2009-01-01

Abstract

In this paper, we propose a novel pattern-recognition system to identify and classify buried objects from ground-penetrating radar (GPR) imagery. The entire process is subdivided into four steps. After a preprocessing step, the GPR image is thresholded to put under light the regions containing potential objects. The third step of the system consists of automatically detecting the objects in the obtained binary image by means of a search of linear/hyperbolic patterns formulated within a genetic optimization framework. In the genetic optimizer, each chromosome models the apex position and the curvature associated with the candidate pattern, while the fitness function expresses the Hamming distance between that pattern and the binary image content. Finally, in the fourth step, the problem of the recognition of the material type of the identified objects is approached as a classification issue, which is solved by means of an opportune feature-extraction strategy and a support vector machin...
2009
7
Pasolli, Edoardo; Melgani, Farid; Donelli, Massimo
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/44424
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 237
  • ???jsp.display-item.citation.isi??? 194
  • OpenAlex ND
social impact