We propose a new model-free approach for kinematic robot control, where both the model and its parameters are partially unknown, which is inspired by the model-free plant tuning framework. The proposed method only relies on the assumption that the relationship between control inputs and outputs is a smooth and static unknown function, whose partial derivatives have lower and upper bounds that are approximately known. Notably, our approach does not require a learning phase, and it is flexible enough to be applied to a wide class of robotic structures. To showcase the methodology, two distinct types of robotic challenges are considered: the control of a family of cable-driven parallel robots and the control of a tendon-driven soft robot. We devise a task-independent approach to synthesize controllers that enable robots to achieve their goals, with minimum prior knowledge of the nonlinear system. Experimental results are presented for the cable-driven parallel robot, while simulations are...

We propose a new model-free approach for kinematic robot control, where both the model and its parameters are partially unknown, which is inspired by the model-free plant tuning framework. The proposed method only relies on the assumption that the relationship between control inputs and outputs is a smooth and static unknown function, whose partial derivatives have lower and upper bounds that are approximately known. Notably, our approach does not require a learning phase, and it is flexible enough to be applied to a wide class of robotic structures. To showcase the methodology, two distinct types of robotic challenges are considered: the control of a family of cable-driven parallel robots and the control of a tendon-driven soft robot. We devise a task-independent approach to synthesize controllers that enable robots to achieve their goals, with minimum prior knowledge of the nonlinear system. Experimental results are presented for the cable-driven parallel robot, while simulations are conducted for the soft robot case. (c) 2024 Published by Elsevier Ltd.

Model-free kinematic control for robotic systems / Salvato, E.; Blanchini, F.; Fenu, G.; Giordano, G.; Pellegrino, F. A.. - In: AUTOMATICA. - ISSN 0005-1098. - 173:(2025). [10.1016/j.automatica.2024.112030]

Model-free kinematic control for robotic systems

Giordano G.;
2025-01-01

Abstract

We propose a new model-free approach for kinematic robot control, where both the model and its parameters are partially unknown, which is inspired by the model-free plant tuning framework. The proposed method only relies on the assumption that the relationship between control inputs and outputs is a smooth and static unknown function, whose partial derivatives have lower and upper bounds that are approximately known. Notably, our approach does not require a learning phase, and it is flexible enough to be applied to a wide class of robotic structures. To showcase the methodology, two distinct types of robotic challenges are considered: the control of a family of cable-driven parallel robots and the control of a tendon-driven soft robot. We devise a task-independent approach to synthesize controllers that enable robots to achieve their goals, with minimum prior knowledge of the nonlinear system. Experimental results are presented for the cable-driven parallel robot, while simulations are...
2025
Salvato, E.; Blanchini, F.; Fenu, G.; Giordano, G.; Pellegrino, F. A.
Model-free kinematic control for robotic systems / Salvato, E.; Blanchini, F.; Fenu, G.; Giordano, G.; Pellegrino, F. A.. - In: AUTOMATICA. - ISSN 0005-1098. - 173:(2025). [10.1016/j.automatica.2024.112030]
File in questo prodotto:
File Dimensione Formato  
J075_2025_Automatica.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.22 MB
Formato Adobe PDF
1.22 MB Adobe PDF   Visualizza/Apri
Automatica_ModelFreeKinematicRobotControl.pdf

accesso aperto

Tipologia: Post-print referato (Refereed author’s manuscript)
Licenza: Creative commons
Dimensione 1.77 MB
Formato Adobe PDF
1.77 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/442570
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
  • OpenAlex ND
social impact