We investigate an infinite dimensional partial differential equation of Isaacs' type, which arises from a zero-sum differential game between two masses. The evolution of the two masses is described by a controlled transport/continuity equation, where the control is given by the vector velocity field. Our study is set in the framework of the viscosity solutions theory in Hilbert spaces, and we prove the uniqueness of the value functions as solutions of the Isaacs equation.

A zero-sum differential game for two opponent masses / Bagagiolo, Fabio; Capuani, Rossana; Marzufero, Luciano. - In: SN PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS. - ISSN 2662-2963. - STAMPA. - 2025, 6:(2025), pp. 1901-1923. [10.1007/s42985-025-00322-5]

A zero-sum differential game for two opponent masses

Bagagiolo, Fabio;Capuani, Rossana;Marzufero, Luciano
2025-01-01

Abstract

We investigate an infinite dimensional partial differential equation of Isaacs' type, which arises from a zero-sum differential game between two masses. The evolution of the two masses is described by a controlled transport/continuity equation, where the control is given by the vector velocity field. Our study is set in the framework of the viscosity solutions theory in Hilbert spaces, and we prove the uniqueness of the value functions as solutions of the Isaacs equation.
2025
Settore MAT/05 - Analisi Matematica
Bagagiolo, Fabio; Capuani, Rossana; Marzufero, Luciano
A zero-sum differential game for two opponent masses / Bagagiolo, Fabio; Capuani, Rossana; Marzufero, Luciano. - In: SN PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS. - ISSN 2662-2963. - STAMPA. - 2025, 6:(2025), pp. 1901-1923. [10.1007/s42985-025-00322-5]
File in questo prodotto:
File Dimensione Formato  
PDEA_2025.pdf

accesso aperto

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Creative commons
Dimensione 428.51 kB
Formato Adobe PDF
428.51 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/440790
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact