We characterize the number of points for which there exist non-empty Terracini sets of points in P n. Then, we study minimally Terracini finite sets of points in P n, and we obtain a complete description, in the case of P 3 , when the number of points is less than twice the degree of the linear system.
Minimal Terracini loci in projective space / Ballico, Edoardo; Brambilla, Maria Chiara. - In: ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI. RENDICONTI LINCEI. MATEMATICA E APPLICAZIONI. - ISSN 1120-6330. - 35:2(2024), pp. 175-213. [10.4171/RLM/1038]
Minimal Terracini loci in projective space
Ballico, Edoardo;
2024-01-01
Abstract
We characterize the number of points for which there exist non-empty Terracini sets of points in P n. Then, we study minimally Terracini finite sets of points in P n, and we obtain a complete description, in the case of P 3 , when the number of points is less than twice the degree of the linear system.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
10.4171-rlm-1038.pdf
accesso aperto
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Creative commons
Dimensione
508.91 kB
Formato
Adobe PDF
|
508.91 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione



