The aim of these notes is to provide a reasonably short and “hands-on” introduction to the differential calculus on associative algebras over a field of characteristic zero. Following a suggestion of Ginzburg's we call the resulting theory associative geometry. We argue that this formalism sheds a new light on some classic solution methods in the theory of finite-dimensional integrable dynamical systems.

An introduction to associative geometry with applications to integrable systems / Tacchella, A.. - In: JOURNAL OF GEOMETRY AND PHYSICS. - ISSN 0393-0440. - 118:(2017), pp. 202-233. [10.1016/j.geomphys.2016.09.013]

An introduction to associative geometry with applications to integrable systems

Tacchella A.
2017-01-01

Abstract

The aim of these notes is to provide a reasonably short and “hands-on” introduction to the differential calculus on associative algebras over a field of characteristic zero. Following a suggestion of Ginzburg's we call the resulting theory associative geometry. We argue that this formalism sheds a new light on some classic solution methods in the theory of finite-dimensional integrable dynamical systems.
2017
Tacchella, A.
An introduction to associative geometry with applications to integrable systems / Tacchella, A.. - In: JOURNAL OF GEOMETRY AND PHYSICS. - ISSN 0393-0440. - 118:(2017), pp. 202-233. [10.1016/j.geomphys.2016.09.013]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/438636
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
  • OpenAlex ND
social impact