We study the asymptotic behavior of three classes of nonlocal functionals in complete metric spaces equipped with a doubling measure and supporting a Poincaré inequality. We show that the limits of these nonlocal functionals are comparable to the total variation ‖Df‖(Ω) or the Sobolev semi-norm ∫Ωgfpdμ, which extends Euclidean results to metric measure spaces. In contrast to the classical setting, we also give an example to show that the limits are not always equal to the corresponding total variation even for Lipschitz functions.

BV Functions and Nonlocal Functionals in Metric Measure Spaces / Lahti, P.; Pinamonti, A.; Zhou, X.. - In: THE JOURNAL OF GEOMETRIC ANALYSIS. - ISSN 1050-6926. - 34:10(2024). [10.1007/s12220-024-01766-8]

BV Functions and Nonlocal Functionals in Metric Measure Spaces

Pinamonti A.;Zhou X.
2024-01-01

Abstract

We study the asymptotic behavior of three classes of nonlocal functionals in complete metric spaces equipped with a doubling measure and supporting a Poincaré inequality. We show that the limits of these nonlocal functionals are comparable to the total variation ‖Df‖(Ω) or the Sobolev semi-norm ∫Ωgfpdμ, which extends Euclidean results to metric measure spaces. In contrast to the classical setting, we also give an example to show that the limits are not always equal to the corresponding total variation even for Lipschitz functions.
2024
10
Lahti, P.; Pinamonti, A.; Zhou, X.
BV Functions and Nonlocal Functionals in Metric Measure Spaces / Lahti, P.; Pinamonti, A.; Zhou, X.. - In: THE JOURNAL OF GEOMETRIC ANALYSIS. - ISSN 1050-6926. - 34:10(2024). [10.1007/s12220-024-01766-8]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/438271
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
  • OpenAlex ND
social impact