We consider non-singular maps whose components are polynomial in the variable y. We prove that if a map has y-degree 1, then it is the composition of a triangular map and a quasi-triangular map. We also prove that non-singular y-quadratic maps are injective if one of the leading functional coefficients does not vanish. Moreover, y-quadratic maps with constant Jacobian determinant are shown to be the composition of a quasitriangular map and three triangular maps. Other results are given for wider classes of non-singular maps, considering also injectivity on vertical strips I x R.

Global injectivity of planar non-singular maps that are polynomial in one variable / Sabatini, M.. - In: COLLOQUIUM MATHEMATICUM. - ISSN 0010-1354. - STAMPA. - 175:1(2024), pp. 137-151. [10.4064/cm9195-1-2024]

Global injectivity of planar non-singular maps that are polynomial in one variable

Sabatini M.
2024-01-01

Abstract

We consider non-singular maps whose components are polynomial in the variable y. We prove that if a map has y-degree 1, then it is the composition of a triangular map and a quasi-triangular map. We also prove that non-singular y-quadratic maps are injective if one of the leading functional coefficients does not vanish. Moreover, y-quadratic maps with constant Jacobian determinant are shown to be the composition of a quasitriangular map and three triangular maps. Other results are given for wider classes of non-singular maps, considering also injectivity on vertical strips I x R.
2024
1
Sabatini, M.
Global injectivity of planar non-singular maps that are polynomial in one variable / Sabatini, M.. - In: COLLOQUIUM MATHEMATICUM. - ISSN 0010-1354. - STAMPA. - 175:1(2024), pp. 137-151. [10.4064/cm9195-1-2024]
File in questo prodotto:
File Dimensione Formato  
doiA-cm9195-1-2024.pdf

Solo gestori archivio

Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 474.33 kB
Formato Adobe PDF
474.33 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/437845
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact