Starting from an integral projective variety Y equipped with a very ample, non-special and not-secant defective line bundle L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {L}$$\end{document}, the paper establishes, under certain conditions, the regularity of (YxP2,L[t])\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(Y \times {\mathbb {P}}<^>2,\mathcal {L}[t])$$\end{document} for t >= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\ge 2$$\end{document}. The mildness of those conditions allow to classify all secant defective cases of any product of (P1)jx(P2)k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\mathbb {P}}<^>1)<^>{ j}\times ({\mathbb {P}}<^>2)<^>{k}$$\end{document}, j,k >= 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$j,k \ge 0$$\end{document}, embedded in multidegree at least (2,& mldr;,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2, \ldots , 2)$$\end{document} and (PmxPnx(P2)k,OPmxPnx(P2)k(d,e,t1,& mldr;,tk))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mathbb {P}<^>m\times \mathbb {P}<^>n\times (\mathbb {P}<^>2)<^>k, \mathcal {O}_{\mathbb {P}<^>m\times \mathbb {P}<^>n\times (\mathbb {P}<^>2)<^>k} (d,e,t_1, \ldots , t_k))$$\end{document} where d,e >= 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d,e \ge 3$$\end{document}, ti >= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_i\ge 2$$\end{document}, for any n and m.

Tensoring by a plane maintains secant-regularity in degree at least two / Ballico, Edoardo; Bernardi, Alessandra; Mańdziuk, T.. - In: ANNALI DI MATEMATICA PURA ED APPLICATA. - ISSN 1618-1891. - 2024:(2024). [10.1007/s10231-024-01493-5]

Tensoring by a plane maintains secant-regularity in degree at least two

Ballico, Edoardo;Bernardi, Alessandra;
2024-01-01

Abstract

Starting from an integral projective variety Y equipped with a very ample, non-special and not-secant defective line bundle L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {L}$$\end{document}, the paper establishes, under certain conditions, the regularity of (YxP2,L[t])\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(Y \times {\mathbb {P}}<^>2,\mathcal {L}[t])$$\end{document} for t >= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\ge 2$$\end{document}. The mildness of those conditions allow to classify all secant defective cases of any product of (P1)jx(P2)k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\mathbb {P}}<^>1)<^>{ j}\times ({\mathbb {P}}<^>2)<^>{k}$$\end{document}, j,k >= 0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$j,k \ge 0$$\end{document}, embedded in multidegree at least (2,& mldr;,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2, \ldots , 2)$$\end{document} and (PmxPnx(P2)k,OPmxPnx(P2)k(d,e,t1,& mldr;,tk))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mathbb {P}<^>m\times \mathbb {P}<^>n\times (\mathbb {P}<^>2)<^>k, \mathcal {O}_{\mathbb {P}<^>m\times \mathbb {P}<^>n\times (\mathbb {P}<^>2)<^>k} (d,e,t_1, \ldots , t_k))$$\end{document} where d,e >= 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d,e \ge 3$$\end{document}, ti >= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_i\ge 2$$\end{document}, for any n and m.
2024
Ballico, Edoardo; Bernardi, Alessandra; Mańdziuk, T.
Tensoring by a plane maintains secant-regularity in degree at least two / Ballico, Edoardo; Bernardi, Alessandra; Mańdziuk, T.. - In: ANNALI DI MATEMATICA PURA ED APPLICATA. - ISSN 1618-1891. - 2024:(2024). [10.1007/s10231-024-01493-5]
File in questo prodotto:
File Dimensione Formato  
s10231-024-01493-5.pdf

Solo gestori archivio

Descrizione: online first
Tipologia: Versione editoriale (Publisher’s layout)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 614.92 kB
Formato Adobe PDF
614.92 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/437791
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
  • OpenAlex ND
social impact