This paper presents a study of the hydraulic response of an infinite unsaturated slope exposed to a perturbation of the ordinary seasonal climatic cycle. The ground flow is modelled via a simplified one-dimensional finite difference scheme by decomposing the two-dimensional slope seepage into antisymmetric and symmetric parts. The numerical scheme incorporates two distinct hysteretic and non-hysteretic soil water retention laws, whose parameters have been selected after a preliminary sensitivity analysis. Results indicate that, in the hysteretic case, the “memory” of the perturbation takes a long time to fade, and the ordinary soil saturation cycle is only restored after several years of normal weather. Instead, in the non-hysteretic case, the recovery of the ordinary saturation regime is almost immediate after the perturbation. In contrast with the markedly different predictions of degree of saturation, both hysteretic and non-hysteretic slope models predict virtually identical evolutions of negative pore water pressures, with an almost immediate restoration of the ordinary cycle after the perturbation.
Long-Term “Memory” of Extraordinary Climatic Seasons in the Hysteretic Seepage of an Unsaturated Infinite Slope / Bianchi, D.; Gallipoli, D.; Bovolenta, R.; Leoni, M.. - In: ACTA GEOTECHNICA. - ISSN 1861-1125. - 2024, 19:(2024), pp. 7207-7227. [10.1007/s11440-024-02307-x]
Long-Term “Memory” of Extraordinary Climatic Seasons in the Hysteretic Seepage of an Unsaturated Infinite Slope
Bianchi D.;
2024-01-01
Abstract
This paper presents a study of the hydraulic response of an infinite unsaturated slope exposed to a perturbation of the ordinary seasonal climatic cycle. The ground flow is modelled via a simplified one-dimensional finite difference scheme by decomposing the two-dimensional slope seepage into antisymmetric and symmetric parts. The numerical scheme incorporates two distinct hysteretic and non-hysteretic soil water retention laws, whose parameters have been selected after a preliminary sensitivity analysis. Results indicate that, in the hysteretic case, the “memory” of the perturbation takes a long time to fade, and the ordinary soil saturation cycle is only restored after several years of normal weather. Instead, in the non-hysteretic case, the recovery of the ordinary saturation regime is almost immediate after the perturbation. In contrast with the markedly different predictions of degree of saturation, both hysteretic and non-hysteretic slope models predict virtually identical evolutions of negative pore water pressures, with an almost immediate restoration of the ordinary cycle after the perturbation.File | Dimensione | Formato | |
---|---|---|---|
s11440-024-02307-x.pdf
accesso aperto
Tipologia:
Versione editoriale (Publisher’s layout)
Licenza:
Creative commons
Dimensione
4.49 MB
Formato
Adobe PDF
|
4.49 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione