Can signs of intentional behavior be traced in an insect larva, traditionally thought to be driven only by mere reflexes? We trained Tenebrio molitor coleoptera larvae in a uniform Y-maze to prefer one target branch to get access to food, observing their ability to learn and retain access to the reward-associated side for up to 24 h. During reward devaluation, the reward food (experimental group) and a different food (control group) were paired with an aversive stimulus in a new environment. When tested again in the Y-maze, mealworms of the experimental group significantly reduced their visits to the target branch, whereas mealworms of the control group did not. Importantly, we found that the larvae did not have to experience the unpleasant consequences directly in the target branch to halt their behavior, as the exposure to the aversive taste occurred in a separate unfamiliar context. This is evidence that the mealworms formed a mental representation of action-consequence relationships, demonstrating flexible control of their actions to achieve desired outcomes at an early stage of their development.
Goal-directed behavior in Tenebrio molitor larvae / Dissegna, Andrea; Turatto, Massimo; Chiandetti, Cinzia. - In: SCIENTIFIC REPORTS. - ISSN 2045-2322. - 14:1(2024). [10.1038/s41598-024-72455-3]
Goal-directed behavior in Tenebrio molitor larvae
Andrea Dissegna;Massimo Turatto;Cinzia Chiandetti
2024-01-01
Abstract
Can signs of intentional behavior be traced in an insect larva, traditionally thought to be driven only by mere reflexes? We trained Tenebrio molitor coleoptera larvae in a uniform Y-maze to prefer one target branch to get access to food, observing their ability to learn and retain access to the reward-associated side for up to 24 h. During reward devaluation, the reward food (experimental group) and a different food (control group) were paired with an aversive stimulus in a new environment. When tested again in the Y-maze, mealworms of the experimental group significantly reduced their visits to the target branch, whereas mealworms of the control group did not. Importantly, we found that the larvae did not have to experience the unpleasant consequences directly in the target branch to halt their behavior, as the exposure to the aversive taste occurred in a separate unfamiliar context. This is evidence that the mealworms formed a mental representation of action-consequence relationships, demonstrating flexible control of their actions to achieve desired outcomes at an early stage of their development.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione