This paper presents the method proposed by team UTAOS for the Mediaeval 2017 challenge on Multi-media and Satellite. In the first task, we mainly rely on different Convolutional Neural Network (CNN) models combined with two different late fusion methods. We also utilize the additional information available in the form of meta-data. The average and mean over precision at different cut-offs for our best runs are 84.94% and 95.11%, respectively. For challenge two, we utilize a Generative Adversarial Network (GAN). The mean Intersection-over-Union (IoU) for our best run is 0.8315.

CNN and GAN based satellite and social media data fusion for disaster detection / Ahmad, K.; Konstantin, P.; Riegler, M.; Conci, N.; Holversen, P.. - 1984:(2017). (Intervento presentato al convegno 2017 Multimedia Benchmark Workshop, MediaEval 2017 tenutosi a irl nel 2017).

CNN and GAN based satellite and social media data fusion for disaster detection

Ahmad K.;Conci N.;
2017-01-01

Abstract

This paper presents the method proposed by team UTAOS for the Mediaeval 2017 challenge on Multi-media and Satellite. In the first task, we mainly rely on different Convolutional Neural Network (CNN) models combined with two different late fusion methods. We also utilize the additional information available in the form of meta-data. The average and mean over precision at different cut-offs for our best runs are 84.94% and 95.11%, respectively. For challenge two, we utilize a Generative Adversarial Network (GAN). The mean Intersection-over-Union (IoU) for our best run is 0.8315.
2017
CEUR Workshop Proceedings
germany
CEUR-WS
CNN and GAN based satellite and social media data fusion for disaster detection / Ahmad, K.; Konstantin, P.; Riegler, M.; Conci, N.; Holversen, P.. - 1984:(2017). (Intervento presentato al convegno 2017 Multimedia Benchmark Workshop, MediaEval 2017 tenutosi a irl nel 2017).
Ahmad, K.; Konstantin, P.; Riegler, M.; Conci, N.; Holversen, P.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/436861
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact