This paper presents the method proposed by MRLDCSE team for the disaster image retrieval task in Mediaeval 2017 challenge on Multimedia and Satellite. In the proposed work, for visual information, we rely on Convolutional Neural Networks (CNN) features extracted with two different models pre-trained on ImageNet and places datasets. Moreover, a late fusion technique is employed to jointly utilize visual and the additional information available in the form of meta-data for the retrieval of disaster images from social media. The average precision for our three different runs with visual information only, meta-data and combination of meta-data and visual information are 95.73%, 18.23% and 92.55%, respectively.

Convolutional neural networks for disaster images retrieval / Ahmad, S.; Ahmad, K.; Ahmad, N.; Conci, N.. - 1984:(2017). (Intervento presentato al convegno 2017 Multimedia Benchmark Workshop, MediaEval 2017 tenutosi a irl nel 2017).

Convolutional neural networks for disaster images retrieval

Ahmad K.;Conci N.
2017-01-01

Abstract

This paper presents the method proposed by MRLDCSE team for the disaster image retrieval task in Mediaeval 2017 challenge on Multimedia and Satellite. In the proposed work, for visual information, we rely on Convolutional Neural Networks (CNN) features extracted with two different models pre-trained on ImageNet and places datasets. Moreover, a late fusion technique is employed to jointly utilize visual and the additional information available in the form of meta-data for the retrieval of disaster images from social media. The average precision for our three different runs with visual information only, meta-data and combination of meta-data and visual information are 95.73%, 18.23% and 92.55%, respectively.
2017
CEUR Workshop Proceedings
germany
CEUR-WS
Convolutional neural networks for disaster images retrieval / Ahmad, S.; Ahmad, K.; Ahmad, N.; Conci, N.. - 1984:(2017). (Intervento presentato al convegno 2017 Multimedia Benchmark Workshop, MediaEval 2017 tenutosi a irl nel 2017).
Ahmad, S.; Ahmad, K.; Ahmad, N.; Conci, N.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/436860
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? ND
  • OpenAlex ND
social impact