Recently a constructive method was introduced for finite-dimensional observer-based control of 1D parabolic PDEs. In this paper we present an improved method in terms of the reduced-order LMIs (that significantly reduce the computation time) and introduce predictors to manage with larger delays. We treat the case of a 1D heat equation under Neumann actuation and non-local measurement, that has not been studied yet. We apply modal decomposition and prove L2 exponential stability by a direct Lyapunov method. We provide reduced-order LMI conditions for finding the observer dimension N and resulting decay rate. The LMI dimension does not grow with N. The LMI is always feasible for large N, and feasibility for N implies feasibility for N+1. For the first time we manage with delayed implementation of the controller in the presence of fast-varying (without any constraints on the delay-derivative) input and output delays. To manage with larger delays, we construct classical observer-based predictors. For the known input delay, the LMIs’ dimension does not grow with N, whereas for unknown one the LMIs dimension grows, but it is essentially smaller than in the existing results. A numerical example demonstrates the efficiency of our method.

Delayed finite-dimensional observer-based control of 1D parabolic PDEs via reduced-order LMIs / Katz, Rami; Fridman, E.. - In: AUTOMATICA. - ISSN 0005-1098. - 142:(2022). [10.1016/j.automatica.2022.110341]

Delayed finite-dimensional observer-based control of 1D parabolic PDEs via reduced-order LMIs

Katz, Rami;
2022-01-01

Abstract

Recently a constructive method was introduced for finite-dimensional observer-based control of 1D parabolic PDEs. In this paper we present an improved method in terms of the reduced-order LMIs (that significantly reduce the computation time) and introduce predictors to manage with larger delays. We treat the case of a 1D heat equation under Neumann actuation and non-local measurement, that has not been studied yet. We apply modal decomposition and prove L2 exponential stability by a direct Lyapunov method. We provide reduced-order LMI conditions for finding the observer dimension N and resulting decay rate. The LMI dimension does not grow with N. The LMI is always feasible for large N, and feasibility for N implies feasibility for N+1. For the first time we manage with delayed implementation of the controller in the presence of fast-varying (without any constraints on the delay-derivative) input and output delays. To manage with larger delays, we construct classical observer-based predictors. For the known input delay, the LMIs’ dimension does not grow with N, whereas for unknown one the LMIs dimension grows, but it is essentially smaller than in the existing results. A numerical example demonstrates the efficiency of our method.
2022
Katz, Rami; Fridman, E.
Delayed finite-dimensional observer-based control of 1D parabolic PDEs via reduced-order LMIs / Katz, Rami; Fridman, E.. - In: AUTOMATICA. - ISSN 0005-1098. - 142:(2022). [10.1016/j.automatica.2022.110341]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/436740
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 10
  • OpenAlex ND
social impact