A matrix A is called totally positive (TP) if all its minors are positive, and totally nonnegative (TN) if all its minors are nonnegative. A square matrix A is called oscillatory if it is TN and some power of A is TP. A linear time-varying system is called an oscillatory discrete-time system (ODTS) if the matrix defining its evolution at each time k is oscillatory. We analyze the properties of n-dimensional time-varying nonlinear discrete-time systems whose variational system is an ODTS, and show that they have a well-ordered behavior. More precisely, if the nonlinear system is time-varying and T-periodic then any trajectory either leaves any compact set or converges to an ((n−1)T)-periodic trajectory, that is, a subharmonic trajectory. These results hold for any dimension n. The analysis of such systems requires establishing that a line integral of the Jacobian of the nonlinear system is an oscillatory matrix. This is non-trivial, as the sum of two oscillatory matrices is not necessarily oscillatory, and this carries over to integrals. We derive several new sufficient conditions guaranteeing that the line integral of a matrix is oscillatory, and demonstrate how this yields interesting classes of discrete-time nonlinear systems that admit a well-ordered behavior.
Entrainment to subharmonic trajectories in oscillatory discrete-time systems / Katz, Rami; Margaliot, M.; Fridman, E.. - In: AUTOMATICA. - ISSN 0005-1098. - 116:(2020). [10.1016/j.automatica.2020.108919]
Entrainment to subharmonic trajectories in oscillatory discrete-time systems
Katz, Rami;
2020-01-01
Abstract
A matrix A is called totally positive (TP) if all its minors are positive, and totally nonnegative (TN) if all its minors are nonnegative. A square matrix A is called oscillatory if it is TN and some power of A is TP. A linear time-varying system is called an oscillatory discrete-time system (ODTS) if the matrix defining its evolution at each time k is oscillatory. We analyze the properties of n-dimensional time-varying nonlinear discrete-time systems whose variational system is an ODTS, and show that they have a well-ordered behavior. More precisely, if the nonlinear system is time-varying and T-periodic then any trajectory either leaves any compact set or converges to an ((n−1)T)-periodic trajectory, that is, a subharmonic trajectory. These results hold for any dimension n. The analysis of such systems requires establishing that a line integral of the Jacobian of the nonlinear system is an oscillatory matrix. This is non-trivial, as the sum of two oscillatory matrices is not necessarily oscillatory, and this carries over to integrals. We derive several new sufficient conditions guaranteeing that the line integral of a matrix is oscillatory, and demonstrate how this yields interesting classes of discrete-time nonlinear systems that admit a well-ordered behavior.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione