Finite-dimensional observer-based controller design for PDEs is a challenging problem. Recently, such controllers were introduced for the one dimensional (1D) heat equation, under the assumption that one of the observation or control operators is bounded. This article suggests a constructive method for such controllers for 1D parabolic partial differential equations (PDEs) with both observation and control operators being unbounded. We consider the Kuramoto-Sivashinsky equation under either boundary or in-domain point measurement and boundary actuation in the presence of disturbances in the PDE and measurement. We employ a modal decomposition approach via dynamic extension, using eigenfunctions of a Sturm-Liouville operator. The controller dimension is defined by the number of unstable modes, whereas the observer dimension N may be larger. We suggest a direct Lyapunov approach to the full-order closed-loop system, which results in a linear matrix inequality (LMI), for input-to-state stabilization (ISS) and guaranteed L2-gain, whose elements and dimension depend on N. The value of N and the decay rate are obtained from the LMI. We prove that the LMI is always feasible provided N and the L2 or ISS gains are large enough, thereby obtaining guarantees for our approach. Moreover, for the case of stabilization, we show that feasibility of the LMI for some N implies its feasibility for N+1. Numerical examples demonstrate the efficiency of the method.

Finite-Dimensional Boundary Control of the Linear Kuramoto-Sivashinsky Equation Under Point Measurement With Guaranteed L2-Gain / Katz, Rami; Fridman, E.. - In: IEEE TRANSACTIONS ON AUTOMATIC CONTROL. - ISSN 0018-9286. - 67:10(2022), pp. 5570-5577. [10.1109/TAC.2021.3121234]

Finite-Dimensional Boundary Control of the Linear Kuramoto-Sivashinsky Equation Under Point Measurement With Guaranteed L2-Gain

Katz, Rami;
2022-01-01

Abstract

Finite-dimensional observer-based controller design for PDEs is a challenging problem. Recently, such controllers were introduced for the one dimensional (1D) heat equation, under the assumption that one of the observation or control operators is bounded. This article suggests a constructive method for such controllers for 1D parabolic partial differential equations (PDEs) with both observation and control operators being unbounded. We consider the Kuramoto-Sivashinsky equation under either boundary or in-domain point measurement and boundary actuation in the presence of disturbances in the PDE and measurement. We employ a modal decomposition approach via dynamic extension, using eigenfunctions of a Sturm-Liouville operator. The controller dimension is defined by the number of unstable modes, whereas the observer dimension N may be larger. We suggest a direct Lyapunov approach to the full-order closed-loop system, which results in a linear matrix inequality (LMI), for input-to-state stabilization (ISS) and guaranteed L2-gain, whose elements and dimension depend on N. The value of N and the decay rate are obtained from the LMI. We prove that the LMI is always feasible provided N and the L2 or ISS gains are large enough, thereby obtaining guarantees for our approach. Moreover, for the case of stabilization, we show that feasibility of the LMI for some N implies its feasibility for N+1. Numerical examples demonstrate the efficiency of the method.
2022
10
Katz, Rami; Fridman, E.
Finite-Dimensional Boundary Control of the Linear Kuramoto-Sivashinsky Equation Under Point Measurement With Guaranteed L2-Gain / Katz, Rami; Fridman, E.. - In: IEEE TRANSACTIONS ON AUTOMATIC CONTROL. - ISSN 0018-9286. - 67:10(2022), pp. 5570-5577. [10.1109/TAC.2021.3121234]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11572/436721
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
  • OpenAlex ND
social impact